Evaluating Characteristics of CUDA Communication Primitives on High-Bandwidth Interconnects

Carl Pearson¹, Abdul Dakkak¹, Sarah Hashash¹, Cheng Li¹, I-Hsin Chung², Jinjun Xiong², Wen-Mei Hwu¹ ¹ University of Illinois Urbana-Champaign, Urbana, IL

² IBM T. J. Watson Research, Yorktown Heights, NY

ILLINOIS Electrical & Computer Engineering COLLEGE OF ENGINEERING

Why GPU Interconnect Bandwidth?

Nvidia V100 attached by PCIe 3

<u>GPU Consumes</u>

15.7 TFLOP FP32

31.4 x 10¹² operands/s

Host Produces

15.8 GB/s over PCIe

3.95 x 10⁹ operands/s

~8000 FP32 operations per operand transferred

or

~2000 FP32 operations per byte transferred

Challenges and Contributions

Challenges and Contributions

Challenges and Contributions

5

Comprehensive Coverage of CUDA Bulk Transfers

- Explicit transfers
- Peer Access
- "Zero-Copy"

- Unified Memory
- Unidirectional Transfers
- Bidirectional Transfers

Non-CUDA Parameter: NUMA Pinning

 Not all cudaMemcpy created equal on high-bandwidth interconnects

Configuration (Limiter)	Theoretical (GB/s)	Observed (GB/s)
AC922 Local (3x NVLink 2)	75	66.6 ± 0.013
AC922 Remote (X-bus)	64	41.3 ± 0.009
S822LC Local (2x NVLink 1)	40	31.9 ± 0.008
S822LC Remote (x-bus)	38.4	29.3 ± 0.013
4029GP Local (PCIe 3)	15.8	12.4 ± 0.0002
4029GP Remote (PCIe 3)	15.8	12.4 ± 0.0002

1GB pinned host allocation transferred to GPU

Non-CUDA Parameters

- Variable CPU Clock Speeds
 - \$ cpupower frequency-set --governor performance
- CPU Data Caching

// arch/x86/include/asm/special_insns.h

```
void flush(void *p) {
   asm volatile("clflush %0"
        : "+m"(p)
        : // no inputs
        : // no clobbers
   );
```

// linux/arch/powerpc/include/asm/cache.h

```
void flush(void *p) {
  asm volatile("dcbf 0, %0"
      : // no outputs
      : "r"(p)
      : "memory"
);
```


Pinned Allocation and cudaMemcpy

GPU does DMA to access pinned data on CPU

cudaMemcpy(... , cudaMemcpyHostToDevice)

cudaMemcpy(... , cudaMemcpyDeviceToHost)

cudaMemcpy & CPU Cache

- CPU writes values to initialize data
- For small allocations, data may reside entirely in cache

cudaMemcpy(... , cudaMemcpyDeviceToHost)

cudaMemcpy(... , cudaMemcpyHostToDevice)

cudaMemcpy & CPU Cache

- Flushing the cache forces data to start in the DRAM
- Flushing the cache prevents write-back of dirty data

cudaMemcpy(... , cudaMemcpyDeviceToHost)

Benchmark Design

- Using Google Benchmark Support Library
 - Each benchmark run consists of some number of iterations
 - The number of iterations is
 1 < n < 1e9 and
 total time under measurement >= 0.5s
- Support synchronous and asynchronous operations
- Report variability across runs
 - High variability suggests not all relevant system parameters are fixed

Initialization (as needed)

- Resetting CUDA devices
- NUMA pinning
- Creating allocations
- Creating CUDA streams and events
- Zeroing allocations
- Configure CUDA device peer access

Setup (as needed)

- Move unified memory data to a source device
- Flush caches
- Set CUDA devices
- Adjust NUMA pinning

Timing Strategies

- Timing the data transfer operation
- Different approaches for different transfer types:
 - Synchronous
 - Asynchronous
 - Simultaneous

Asynchronous Operations

- An operation that may complete at any time (from the perspective of the host)
- CUDA API call may return before the operation is complete

Asynchronous Behavior in Synchronous APIs

cudaMemcpy

– CUDA Runtime API §2: "for transfers from pageable host memory to device memory...the function will return once the pageable buffer has been copied to the staging memory, <u>but the DMA to</u> <u>final destination may not have completed</u>"

// wrong
start = std::chrono::system_clock::now()
cudaMemcpy(..., cudaMemcpyHostToDevice)
end = std::chrono::system_clock::now()

Timing Single Operations

Synchronous Asynchronous Host Thread CUDA Stream start wall time "start" event **Reported Time Reported Time** operation operation stop wall time "stop" event

No spurious synchronization costs!

Timing Simultaneous Sync/Async Operations

Unavoidable stream synchronization is measured

Timing Simultaneous Asynchronous Operations

Single Device

Multiple Device

No spurious synchronization costs!

Streams synchronization event measured

IBM S822LC and IBM AC922

Spec	S822LC	AC922
CPU	2x IBM POWER 8	2x IBM POWER 9
GPU	4x Nvidia P100 (Pascal)	4x Nvidia V100 (Volta)
$CPU \leftrightarrow CPU$	X-bus (38.4 GB/s)	X-bus (64 GB/s)
$CPU \leftrightarrow GPU$	2x NVLink 1 (80 GB/s)	3x NVLink 2 (150 GB/s)
$GPU \leftrightarrow GPU$	2x NVLink 1 (80 GB/s)	3x NVLink 2 (150 GB/s)

--- X-BUS 38.4GB/s — NVLink 1.0 40GB/s

NVLink 2.0 50GB/s —

SuperMicro 4029GP-TVRT

Spec	
CPU	2x Intel Xeon Gold 6148
GPU	8x Nvidia V100 (Volta)
$CPU \leftrightarrow CPU$	Intel UPI (62.4 GB/s)
$CPU \leftrightarrow GPU$	PCIe 3.0 x16 (31.6 GB/s)
$GPU \leftrightarrow GPU$	1x/2x NVLink 2
	(25-50 GB/s)

No Locality or Anisotropy on PCIe

cudaMemcpyAsync vs zero-copy CPU/GPU

explicit vs zero-copy CPU/GPU

demand transfers

24

Low bandwidth PCIe 3.0 on 4029GP hides interesting behavior

Pageable Host Allocations and Fast Interconnects

- The implicit pageable-to-pinned copy prevents exploiting fast interconnects
- Multiple threads should speed up pageable-pinned copy
 - Application could use simultaneous transfers
 - CUDA runtime could use multiple worker threads

Strong Locality with High Bandwidth Configurations

cudaMemcpyAsync CPU-GPU

cudaMemcpyAsync GPU-GPU

Transfers across NVLink 2 show strong locality effects

Demand Page Migration

- CUDA system software limits performance available in hardware
 - Page faults
 - Per-page driver heuristics
- Underlying interconnect performance not so important

Demand Page Migration vs Explicit Tranfer

Multiple host threads are needed to make UM faster

28

 Implicit, like unified memory

 Unlike unified memory, can achieve near interconnect theoretical bandwidth

Unified Memory Prefetch vs Explicit

30

• Unified memory prefetch is slow at intermediate sizes

Open-source & Docker

- v0.7.2 released April 8th
- Github: c3sr/comm_scope
- Docker: c3sr/comm_scope
- CUDA 8.0+, CMake 3.12+
- x86 and POWER
- Apache 2.0 license
- Python scope_plot package for plotting results

Future Work

- Unified Memory Microbenchmarks
 - Access patterns & driver heuristics
- System-aware CPU/GPU and GPU/GPU data structures
 - How to allocate and move data depending on who produces and who consumes
 - Hints from application or records from previous executions
- System health status
 - Sanity check during system firmware development or system bring-up

Conclusion

- Comprehensive coverage of CUDA communication methods
- Bandwidth affected by CUDA APIs, non-CUDA system knobs, system topology
- High-bandwidth interconnects expose idiosyncracies of hardware/software system
- Open-source, cross-platform, artifact evaluation stamp

Thank you / Questions

pearson@illinois.edu https://cwpearson.github.io

Other C3SR System Performance Research ProjectsSystem microbenchmarks:https://scope.c3sr.comFull-stack machine learning with tracing:https://mlmodelscope.org

This work is supported by IBM-ILLINOIS Center for Cognitive Computing Systems Research (C3SR) - a research collaboration as part of the IBM AI Horizon Network.

This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation award OCI-0725070 and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications

