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Abstract—Dynamic parallelism on GPUs simplifies the pro-
gramming of many classes of applications that generate paral-
lelizable work not known prior to execution. However, modern
GPUs architectures do not support dynamic parallelism effi-
ciently due to the high kernel launch overhead, limited number
of simultaneous kernels, and limited depth of dynamic calls a
device can support.

In this paper, we propose Kernel Launch Aggregation and
Promotion (KLAP), a set of compiler techniques that improve the
performance of kernels which use dynamic parallelism. Kernel
launch aggregation fuses kernels launched by threads in the same
warp, block, or kernel into a single aggregated kernel, thereby
reducing the total number of kernels spawned and increasing
the amount of work per kernel to improve occupancy. Kernel
launch promotion enables early launch of child kernels to extract
more parallelism between parents and children, and to aggregate
kernel launches across generations mitigating the problem of
limited depth.

We implement our techniques in a real compiler and show that
kernel launch aggregation obtains a geometric mean speedup of
6.58× over regular dynamic parallelism. We also show that kernel
launch promotion enables cases that were not originally possible,
improving throughput by a geometric mean of 30.44×.

I. INTRODUCTION

Many modern GPUs come with support for dynamic paral-

lelism. Dynamic parallelism [1], [2] is the ability of a kernel

running on a GPU to spawn child kernels from the GPU

without returning to the host. This feature makes it easier

to program many classes of applications that dynamically

generate variable amounts of parallel work not known prior to

execution. Such applications include graph traversal [3], mesh

refinement [4], and other kinds of algorithms. Dynamic par-

allelism also simplifies the programming of applications with

complex inter-block dependence such as producer-consumer

algorithms [5].

Although dynamic parallelism improves developer produc-

tivity and code maintainability [3], [6], [7], [8], current hard-

ware support for it can be very inefficient in practice. One

limitation of the current hardware in supporting dynamic paral-

lelism efficiently is the high overhead of launching subkernels

from the device [6], [7]. Another limitation is that the number

of kernels that can be in flight at a time is limited [6], [9].

The effect of both these limitations is exacerbated when many

threads of a parent kernel each launch a small child kernel. In

this case, the many subkernel launches will incur the launch

overhead multiple times, and the small granularity of the

kernels will result in low occupancy, underutilizing the GPU

resources. Yet another limitation of dynamic parallelism is the

bound on the depth of the call stack, which is problematic for

computation patterns with high amounts of recursion and long

dependence chains [6] such as producer-consumer algorithms.

Hardware and software approaches have been proposed

for improving the performance of code that uses dynamic

parallelism on GPUs. Dynamic thread block launch [9] pro-

poses architectural changes that enable kernels to dynamically

launch lightweight thread blocks. Free launch [10] is a soft-

ware approach that eliminates subkernel launches entirely by

reusing parent threads on the GPU to perform the work of

child kernels.

In this paper, we propose Kernel Launch Aggregation and

Promotion (KLAP), a set of compiler techniques that improve

the performance of kernels using dynamic parallelism on

modern GPUs. KLAP applies kernel launch aggregation to

fuse kernels launched by threads in the same warp, block, or

kernel together into a single launch. Aggregation thus reduces

many fine-grain kernels into fewer coarser-grain ones, thereby

incurring fewer launches and allowing more work to be

scheduled simultaneously for better occupancy. For producer-

consumer computation patterns, KLAP employs kernel launch

promotion whereby kernels are launched by the parent prema-

turely. Promotion enables overlapping the independent part of

the child kernel with its parent and also aggregating kernel

launches across multiple descendants which mitigates the

problem of limited depth.

KLAP does not require any new architecture support and is

therefore compatible with current GPUs that support dynamic

parallelism. Moreover, KLAP does not reuse parent threads

nor does it eliminate dynamic kernel launches entirely, but

rather uses the dynamic kernel launch capability in a more

efficient manner. Leveraging the dynamic parallelism capabil-

ity affords KLAP more flexibility and generality than can be

achieved by relying entirely on thread reuse which suffers the

limitations associated with persistent threads.

We make the following contributions:

• We propose kernel launch aggregation, a novel com-

piler technique which improves performance of dynamic978-1-5090-3508-3/16/$31.00 c© 2016 IEEE
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Fig. 1. Kernel Launch Aggregation

parallelism on GPUs by reducing the number of kernel

launches and improving occupancy.

• We propose kernel launch promotion, a compiler trans-

formation that enables work overlap and kernel launch

aggregation and mitigates the problem of limited depth

for producer-consumer computation patterns.

• We implement our techniques in a real compiler and

evaluate its performance on real hardware for multiple

GPU architectures supporting dynamic parallelism.

• We show that kernel launch aggregation obtains a geo-

metric mean speedup of 6.58× over regular dynamic par-

allelism, and that kernel launch promotion enables cases

that were not originally possible, improving throughput

by a geometric mean of 30.44×.

The rest of this paper is organized as follows: Section II

describes kernel launch aggregation, Section III describes

kernel launch promotion, Section IV evaluates our techniques,

Section V outlines related work, and Section VI concludes.

II. KERNEL LAUNCH AGGREGATION

Kernel launch aggregation is a transformation whereby

kernels that were originally launched by multiple threads are

aggregated into a single kernel which is launched once. The

granularity of aggregation is the scope of threads across which

the kernel launches are aggregated. For example, kernel launch

aggregation at warp granularity means that kernels launched

by threads in the same warp are aggregated into a single kernel

which is launched by one of the threads in that warp; on the

other hand, kernels launched by threads in different warps

remain separate.
In this paper, kernel launch aggregation is done at three

different granularities: warp, block, and kernel. Aggregation at

warp and block granularity is described in Section II-A while

aggregation at kernel granularity is described in Section II-B.

A. Warp and Block Granularity
Figure 1(b) illustrates the transformation that takes place

when kernel launch aggregation at warp granularity is applied

to the example in Figure 1(a). In this toy example, the first

warp in the parent kernel originally had two threads each

launching a child kernel. In the transformed version, the

two child kernels are aggregated into the same kernel which

is launched by one of the two threads in the parent warp.

This transformation effectively reduces the number of kernel

launches by up to a factor of the warp size.

The transformation at block granularity illustrated in Fig-

ure 1(c) is very similar. Here, only one thread per block

launches a kernel on behalf of all the threads in the block.

Thus, the number of kernel launches is effectively reduced by

up to a factor of the block size.

The code transformation to perform warp (or block) gran-

ularity aggregation is shown in Figure 2 and an example of

what this code does is shown in Figure 3. Pseudocode is used

and handling of corner cases is omitted for brevity and clarity.

For readers interested in specifics, detailed code is shown in

Figure 12 at the end of the paper.

Figure 2(c) shows how kernel calls inside kernel functions

are transformed from that in Figure 2(a) to call an aggregated

kernel. The first step in the transformed code is for the warp

(or block) to allocate global arrays to store the arguments

and configurations to be passed to the aggregated kernel (line

05). These arrays are needed because different parent threads

may pass different arguments and configurations to their child

kernels, therefore each thread must store its passed values in

global arrays, and these arrays are passed to the aggregated

child instead. Next, each thread stores its arguments and

configurations in the allocated arrays (lines 06-07). The sum of

the number of blocks in all the children is calculated as the new

number of blocks in the aggregated kernel (line 08). Likewise,

the maximum number of threads per block in all the children

is calculated as the new number of threads in the aggregated

kernel (line 09) to make sure all blocks in the aggregated

child kernel have enough threads. Thus, our technique does

not assume that the number of blocks and threads in the

launched kernels are known at compile time or that they are



01  kernel<<<gD,bD>>>(args) 

(a) Original Kernel Call 
05  allocate arrays for args, gD, and bD 
06  store args in arg arrays 
07  store gD in gD array, and bD in bD array 
08  new gD = sum of gD array across warp/block 
09  new bD = max of bD array across warp/block 
10  if(threadIdx == launcher thread in warp/block) { 
11     kernel_agg<<<new gD,new bD>>> 
12                 (arg arrays, gD array, bD array) 
13  } 

(c) Transformed Kernel Call (called in a kernel) 

02  __global__ void kernel(params) { 
03      kernel body 
04  } (b) Original Kernel 

(d) Transformed Kernel (called from a kernel) 

14  __global__ void kernel_agg(param arrays, gD array, bD array) { 
15      calculate index of parent thread 
16      load params from param arrays 
17      load actual gridDim/blockDim from gD/bD arrays 
18      calculate actual blockIdx 
19      if(threadIdx < actual blockDim) { 
20          kernel body  (with kernel launches transformed and with 
21                        using actual gridDim/blockDim/blockIdx) 
22      } 
23  } 

Fig. 2. Code Generation for Aggregation at Warp and Block Granularity
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(b) Block-Granularity Aggregation Logic Example 

param_arr[]={x,-,y,-} 
gD_arr[]={1,0,2,0} 
bD_arr[]={4,0,3,0} 

gD=sum(gD_arr)=3 
bD=max(bD_arr)=4 

gD_scan={1,1,3,3} 
 
 

gD_scan[p-1] ≤ bI < gD_scan[p] 
param=param_arr[p] 

gD’=gD_arr[p] 
bD’=bD_arr[p] 

bI’=bI-gDscan[p-1] 

gD : gridDim 
bD  : blockDim 
bI  : blockIdx 
p : parent 
   threadIdx 

bI=0 
p=0 

param=x 
gD’=1 
bD’=4 
bI’=0 

bI=1 
p=2 

param=y 
gD’=2 
bD’=3 
bI’=0 

bI=2 
p=2 

param=y 
gD’=2 
bD’=3 
bI’=1 

Fig. 3. Aggregation Example

uniform across parent threads. Finally, one of the threads in

the warp (or block) launches a single aggregated kernel on

behalf of the others (line 10). For block granularity, a barrier

synchronization is needed before the launch to ensure that

all the threads in the block have completed their preparation

of the arguments and configurations. In the aggregated kernel

launch, the new configurations are used (line 11), arguments

are replaced with argument arrays, and arrays containing the

configurations for each original child are added (line 12).

In addition to transforming kernel launches in all original

kernels, an aggregated version of each original kernel must

also be created. Figure 2(d) shows how the kernel in Fig-

ure 2(b) is transformed into an aggregated version. First, all

parameters are converted into parameter (param) arrays and

configuration arrays are appended to the parameter list (line

14). Next, before the kernel body, logic is added for the

block to identify which thread in the parent warp (or block)

was its original parent (line 15). After identifying its original

parent, the block is then able to load its actual configurations

and parameters (lines 16-18). Threads that were not in the

original child kernel are then masked out (line 19). Finally,

in the kernel body, all kernel launches are transformed into

aggregated kernel launches, and all uses of blockDim and

blockIdx are replaced with the actual values (lines 20-21).

For the block to identify its original parent, it needs to

execute a scan (prefix sum) on the gD (gridDim) array then

search for its position (given by the aggregated blockIdx
value) between the scanned values (using p-ary search [11]). In

practice, since all child blocks need to scan the same gD array,

the scan is instead performed once by the parent before the

array is passed to the aggregated child kernel. Conveniently,

the scan can be performed along with the preparation of the

configuration and parameter arrays in the parent, making it

incur little additional overhead. Since the child kernel needs

both the scan value and the original gD value, it can recover

the original gD value by subtracting adjacent scan elements.

The scan is performed using CUB [12].

The transformed code requires that all threads are active to

perform the scan and max operations. To handle control di-

vergence, a preprocessing pass performs control-flow-to-data-

flow conversion to convert divergent launches to non-divergent

predicated launches so that all threads reach the launch point.

Predication is achieved by multiplying the predicate with the

grid dimension such that launches by inactive threads become

launches of zero blocks.

B. Kernel Granularity

Figure 1(d) illustrates the transformation that takes place

when kernel launch aggregation is applied at kernel granu-

larity. At this granularity, all the original child kernels are

aggregated into a single kernel. Because there is no global

synchronization on the GPU, a single thread cannot be chosen

to launch the kernel on behalf of the others once the others are

ready. Instead, the child kernels are postponed and launched

from the host after the parent kernel terminates. In order

to postpone the kernel launches, this transformation requires

that parent kernels do not explicitly synchronize with their

child kernels, so kernels with explicit synchronization are not

supported at this granularity.



The code transformation for kernel granularity aggrega-

tion is omitted for brevity. Compared with warp and block

granularity aggregation, it has two main differences. The first

difference is that after the parent kernel has performed all the

setup operations for the aggregated child kernel call, the call

will not take place. Instead, the aggregated child will be called

from the host function after the parent kernel has returned.

This effectively enforces a barrier synchronization among all

parents in the grid before launching the aggregated kernel.

The second difference is in computing the aggregated kernel

configurations. At the warp and block granularity, a regular

tree-based scan is used. However, a tree-based scan at kernel

granularity has two limitations. First, it would require ad-

ditional kernels to be launched between the parent and the

child to perform the scan. Second, it will be inefficient due to

the potentially large number of zero values from threads that

don’t perform a launch (while these zeros exist at the other

granularities, their overhead is not as large). For this reason,

we employ a sequential out of order scan using atomicAdd
which does not store zeros and can be performed in the parent

kernel directly.

One challenge for kernel-granularity aggregation is when

child-kernel launches in the parent kernel are contained in

loops. In this case, the number of launches of each child kernel

must be tracked and passed to the host so the host can launch

the right number of children after the parent kernel terminates.

Our implementation currently does not support this case, but

it is technically feasible and the subject of future work.

C. Optimizations

This subsection discusses some optimizations that we per-

form to improve the efficiency of the generated code. One

source of inefficiency is performing dynamic memory alloca-

tions in the kernel. To avoid such allocations when creating

global arrays for storing parameters and configurations, we

instead allocate a single global memory pool from the host

code and use atomic operations to grab memory from that

pool instead of calling cudaMalloc in the kernel.

A related optimization is aggregating calls to cudaMalloc
that were part of the original code. At warp (or block)

granularity, we transform calls to cudaMalloc by each

thread in the warp (or block) into code that: (1) sums up the

total allocated memory by the warp (or block), (2) uses one

thread in the warp (or block) to allocate that total memory

on behalf of the others, then (3) redistributes the allocated

memory to all threads. At kernel granularity, cudaMalloc
cannot be aggregated because it is a blocking call. In this case,

we aggregate cudaMalloc at block-granularity instead.

Another optimization is avoiding the overhead of creating

arrays for arguments that are uniform across the granularity

of aggregation. For example, if we are performing block-

granularity aggregation, and the compiler can prove that an

argument has the same value for all threads in the block [13],

[14], then an array does not need to be created for that argu-

ment. Instead the argument is passed as is to the aggregated

child kernel as a single value.

Aggregation Granularity 

No-agg W-agg B-agg K-agg 

+ fewer launches 
+ coarser kernels 

+ work is available sooner 
+ less aggregation overhead 

Fig. 4. Aggregation Granularity Tradeoffs

D. Tradeoffs

There are various advantages and disadvantages of increas-

ing the granularity of aggregation as shown in Figure 4. With

coarser-grain aggregation, there are fewer kernel launches and

more work per kernel. Therefore, the kernel launch overhead

is amortized over a larger amount of work and resources are

better utilized. On the other hand, with finer-grain aggregation,

threads launching aggregated kernels have to wait for fewer

threads before performing the launch, making work from

the aggregated kernel available sooner to utilize the GPU.

Moreover, with finer-grain aggregation, there is less overhead

from the aggregation logic because the scan operation to

compute launch configurations are on a smaller scale, and the

configuration arrays to be searched to identify parent threads

are also smaller.

III. KERNEL LAUNCH PROMOTION

Kernel launch promotion applies to a common class of

producer-consumer algorithms whereby each kernel contains

a single block and calls itself recursively as shown in Fig-

ure 5(a). This class of algorithms is common in applications

having complex inter-block dependence [5], [15].

Implementing these patterns using dynamic parallelism

greatly simplifies the expression of inter-block dependence,

but has several limitations. These limitations are: (1) many

fine-grain kernel launches, (2) a deep kernel call stack, and

(3) a long serial dependence chain of single-block kernels. To

address these problems, this section proposes kernel launch

promotion.

Kernel launch promotion is a transformation whereby kernel

calls are promoted to the beginning of a kernel to launch child

kernels prematurely. Ordering between parent and child is then

enforced via release-acquire synchronization. Promotion also

enables two mutually orthogonal optimizations: aggregation

and overlap. The benefit of aggregation is that it reduces the

number of kernels and increases their granularity, as well as

reduces the depth of the kernel call stack. The benefit of

overlap is that it extracts more parallelism from the long serial

dependence chain. These benefits are summarized in Figure 6.

The following subsections detail basic promotion (Sec-

tion III-A) and promotion with aggregation (Section III-B),

overlap (Section III-C), and both together (Section III-D).

A. Basic Promotion

Basic promotion is the transformation where kernel calls are

hoisted to the beginning of the kernel. Figure 5(b) illustrates

the transformation that takes place when basic promotion is
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Fig. 6. Tradeoffs of Optimizations Enabled by Promotion

applied to the example shown in Figure 5(a). In the original

kernel, the kernel call divides the kernel into two different sec-

tions called the prologue and the epilogue. In the transformed

code, the kernel call is moved to the beginning of the kernel

before the prologue. In place of the original kernel call, logic

is inserted to release a flag that the child will acquire to know

when to execute. In all but the first kernel instance (which

is launched from the host), logic is also inserted before the

prologue to acquire the release from the parent.

The code transformation to perform basic promotion is

shown in Figure 7. Pseudocode is used and handling of corner

cases is omitted for brevity and clarity. Figure 7(b) shows the

transformation of the kernel in Figure 7(a) for the first kernel

instance which is launched from the host. In the transforma-

tion, a distinction is made between the arguments which are

available at the beginning of the kernel and arguments that are

not available and need to be postponed. For the arguments that

are not available, the launcher thread allocates buffers (line 10)

and passes them to the child where the arguments will later be

stored. A flag is also allocated for the parent to communicate

with the child to release it (line 11). The child is then launched

prematurely (lines 12-13).

After the prologue, the launcher thread stores the postponed

arguments in the buffers (line 17) and executes a memory fence

(line 18) to make sure all data is visible to the child before it

is released. The launcher thread then sets the flag to release

the child (line 19). In this paper, release is implemented in

CUDA as a non-cached store while acquire is implemented as

a polling loop with a volatile load. In OpenCL 2.0 [16], the

built in support for release and acquire can also be used.

Figure 7(c) shows the transformation of the kernel in Fig-

ure 7(a) for the remaining kernel instances which are launched

by device kernels. There are two main differences between

this code and that of the first instance in Figure 7(b). The

first difference is that instead of values for the postponed

parameters being passed to the kernel, parameter buffers are

passed as well as the flag (line 24). The second difference is

that before the prologue, code is inserted to acquire the flag

then load the postponed parameter values from the buffers

(lines 31-32).

The transformation described requires the launch condition

(not shown in the figure) to be promotable with the kernel

launch. In cases where the condition is dependent on the

prologue, launches can be performed speculatively and an

abort flag can be used to abort the trailing launches.

B. Promotion with Aggregation

Figure 5(c) illustrates the transformation that takes place

when aggregation is applied to the promoted kernel launch. In

this transformation, instead of each parent launching its direct

child as with basic promotion, a parent launches a large pool of

descendants and creates parameter buffers and flags for each of

these descendants. The size of this pool defines the granularity

of aggregation. The descendants communicate via the flags to

release each other one after the other. The block index within

the pool of descendants is acquired dynamically [17], thus

avoiding deadlock situations where child blocks get scheduled

before their parents and starve them. If the pool of descendants

is exhausted, the last descendant in the pool launches a new

pool. When the final descendant is reached, it sets a bit in the

flag for the remaining unused blocks in the pool to abort.

We note that aggregation in this context is different from

the aggregation described in Section II. The aggregation in



01  __global__ void kernel(paramsavail, paramspost) { 
02      prologue 
03      if(launcher thread) { 
04          kernel<<<1,nThreads>>>(argsavail, argspost) 
05      } 
06      epilogue 
07  } 

08  __global__ void kernel(paramsavail, paramspost) { 
09      if(launcher thread) { 
10          allocate postponed arg buffers 
11          allocate child flag 
12          kernel_from_kernel<<<1,nThreads>>> 
13              (argsavail, postponed arg buffers, child flag) 
14      } 
15      prologue 
16      if(launcher thread) { 
17          store argspost in postponed arg buffers 
18          memory fence 
19          set child flag to release child 
20      } 
21      epilogue 
22  } 

argsavail   : arguments available at the beginning of the kernel 
argspost    : arguments whose values are “postponed” because they are not 
              available at the beginning of the kernel 
paramsavail : parameters corresponding to available arguments  
paramspost  : parameters corresponding to postponed arguments  

23  __global__ void kernel_from_kernel(paramsavail, 
24                               postponed param buffers, flag) { 
25      if(launcher thread) { 
26          allocate postponed arg buffers 
27          allocate child flag 
28          kernel_from_kernel<<<1,nThreads>>> 
29              (argsavail, postponed arg buffers, child flag) 
30      } 
31      wait to acquire flag 
32      load paramspost from postponed param buffers 
33      prologue 
34      if(launcher thread) { 
35          store argspost in postponed arg buffers 
36          memory fence 
37          set flag to release child 
38      } 
39      epilogue 
40  } 

Fig. 7. Code Generation for Basic Promotion

Section II is horizontal, meaning that it aggregates kernel

launches by threads in the same kernel at the same level of

depth in the call stack. On the other hand, aggregation in this

context is vertical, meaning that it aggregates kernel launches

across multiple levels of depth in the call stack.

The benefits of promotion with aggregation are twofold.

First, the number of kernel calls is reduced and their granu-

larity is increased which results in better amortization of the

launch overhead and better utilization of the device. Second,

the architectural limitation of the depth of descent is mitigated

because vertical aggregation divides the depth of the kernel

call stack by a factor equal to the aggregation granularity (size

of the pool in the aggregated kernel).

C. Promotion with Overlap

Promotion with overlap is based on the observation that

portions of the prologue of a child kernel can be executed

independently from the parent. Informally, this independent

portion must satisfy two conditions: (1) it must not use any

postponed parameters and (2) it must not have any data

dependence with the prologue of the parent. If these two

conditions are met, then this portion of the prologue can be

executed in parallel with the parent before it releases the child.

Figure 5(d) illustrates the transformation that takes place

when overlap is applied with promotion. In this transformation,

the prologue is divided into two regions – the independent

region (Pi) and dependent region (Pd) – and the independent

region is hoisted before the acquire logic. Here, Pi and Pd

must satisfy the conditions that Pi,x and Pd,x do not write

to any memory referenced by Pi,y where x < y, and Pi,y

does not write to any memory referenced by Pi,x and Pd,x

where x < y. In this paper, a simple programmer annotation

is used to indicate the boundary between Pi and Pd. However,

dataflow analysis can also be used to detect these regions and

is the subject of future work.

D. Promotion with Aggregation and Overlap

Figure 5(e) illustrates the transformation that takes place

when both aggregation and overlap are applied with promo-

tion. The two optimizations are orthogonal and interoperate

nicely without much added complexity. The most noteworthy

difference is that the transformed kernel now has two release-

acquire chains. The first chain enforces the launch condition,

thus ensuring that only the thread blocks that are supposed to

execute do, while the trailing ones abort. The second chain

enforces the dependence between parents and children.

IV. EVALUATION

A. Methodology and Implementation Details

We implement our compiler in Clang version 3.8.0 as a

source-to-source (CUDA-to-CUDA) translator. Although this

version does not compile code that uses dynamic parallelism to

LLVM IR, we modify the semantic checker to accept kernel

calls inside kernel functions to enable the source-to-source

transformation to take place.

The benchmarks and datasets used in the evaluation are

shown in Table I. Aggregation and promotion are evaluated

on different benchmarks because they target different patterns.

For the aggregation benchmarks, a few (bt, ccl, qt) employ

CUDA Dynamic Parallelism (CDP) originally, while the rest

were ported to use CDP from original codes with intra-

thread nested loops. For example, in bfs, the loop over the

edges of a node is converted to a kernel launch with one

thread processing each edge. For the promotion benchmarks,

we chose algorithms which require communication between

adjacent thread blocks, and implemented them using CDP.

Each promotion benchmark is tested on three datasets: small

which is selected to create 2 recurrences, medium which is

selected to create 25 recurrences (the maximum CDP can

handle), and large which is the maximum problem size the

device can handle or the maximum recurrence that aggregation

at granularity 128 can handle (whichever maxes out first).



Aggregation
Name Description Dataset Thread Block Sizes
bfs Breadth First Search [18] Random, 10000 nodes, 1000 degree parent=1024, child=32
bh Barnes Hut Tree [19] 4096 bodies, 4 time-steps parent=256, child=256
bt Bezier Lines Tessellation [20] 25600 lines parent=64, child=32
ccl Connected Component Labelling [21] 8 frames, 4 host streams parent=2, child=256
gc Graph Coloring [22] 1 4096 0.01 (bcsstk13.mtx [23]) parent=256, child=256
mstf Minimum Spanning Tree (find) [19] rmat12.sym.gr [19] parent=1024, child=1024
mstv Minimum Spanning Tree (verify) [19] rmat12.sym.gr [19] parent=1024, child=1024
qt Quadtree [20] 40000 points, 12 depth, 1 min.node parent=128, child=128
sp Survey Propagation [19] random-42000-10000-3.cnf [19], 10000 literals parent=384, child=64
sssp Single-Source Shortest Path [19] rmat12.sym.gr [19] parent=128, child=128

Promotion
Name Description Dataset Thread Block Sizes
los Line of Sight [20] small=511, medium=6399, large=49407 parent=256, child=256
pd Padding [5] small=120×120, medium=450×450, large=4600×4600 parent=512, child=512
pt Partition [24] small=16384, medium=204800, large=25174016 parent=512, child=512
sc Stream Compaction [15] small=16384, medium=204800, large=25174016 parent=512, child=512
unq Unique [24] small=16384, medium=204800, large=25174016 parent=512, child=512
upd Unpadding [5] small=120×120, medium=450×450, large=4600×4600 parent=512, child=512

TABLE I
BENCHMARKS

We run our experiments on both Kepler and Maxwell

architectures. The Kepler GPU is an NVIDIA Tesla K40c

coupled with an 8-core Intel Core i7 920 (2.67 GHz). The

Maxwell GPU is an NVIDIA GeForce GTX 980 coupled with

a 4-core Intel Core i3 530 (2.93 GHz). Both machines use

CUDA SDK 7.5.

We enable per-thread default streams [25] for all bench-

marks to allow kernels launched by threads in the same

block to execute in parallel (default semantic is to serialize

them). Enabling per-thread default streams is needed for the

benchmarks to be amenable to aggregation, otherwise the

serialization semantic would be violated. In addition, enabling

default streams is good for the baseline CDP versions because

it makes them faster (geomean 1.90× on Kepler and 1.83×
on Maxwell). Further, we observe that using private streams is

sometimes faster than per-thread default streams, so when that

is the case, private streams are used in the baseline instead.

We use cudaDeviceSetLimit to adjust the fixed-size

pool of the pending launch buffer appropriately for the baseline

CDP version. Without the right size, the cost of overflowing

the launch buffer pool would greatly penalize the execution

time [26].

For the profiling results in Figure 9, we obtain the exe-

cution time breakdowns by incrementally deactivating parts

of the code and measuring the resulting time difference. We

deactivate code regions using conditionals that are always false

but that cannot be proven so by the compiler, thus preventing

the possibility of dead code elimination in the active regions.

For iterative kernels with data-dependent convergence criteria

(bfs, mstf, mstv, sp, sssp), we only profile the longest-running

iteration because deactivating code of one iteration changes

the behavior of later iterations. Likewise, for recursive kernels

(qt), we only profile the longest running recurrence.

The results in Figure 10 are presented using throughput for

each benchmark. All of them use effective memory throughput

(GB/s) except los which uses ray length per second. The reason

we use throughput is to make the numbers for small, medium,

and large datasets comparable since the large dataset does not

have a CDP baseline because CDP does not work.

For the profiling results in Figure 11, we use performance

counters from the CUDA Profiler [27] to measure achieved

occupancy and executed instruction count.

B. Aggregation

The overall speedup of kernel launch aggregation over CDP

is shown in Figure 8 for each benchmark at warp (W), block

(B), and kernel (K) granularity. We show results for both

Kepler and Maxwell. The similarity of the results demonstrate

the portability of our technique across architectures. Because

the results are very similar, we only discuss Kepler results in

the rest of this section.

All but two benchmarks show speedup over the baseline

CDP version for all granularities. All but one show im-

provement as granularity increases, with geomean speedups

of 3.98×, 4.94×, and 6.58× for W, B, and K respectively.

Two benchmarks do not have results for kernel-granularity

aggregation: ccl because it has explicit synchronization and

sp because the kernel is called in a loop (see Section II-B).

The breakdown of the execution time of each benchmark

is shown in Figure 9 for the original CDP version as well as

aggregation at each granularity. In the following paragraphs,

we discuss each benchmark in the context of these results.

bfs, bt, gc, mstf, mstv, sp. For all six benchmarks, we

observe that the original CDP version was dominated by

the kernel launch overhead. As the aggregation granularity

is increased and fewer kernels are launched, the launch

overhead decreases at the expense of additional aggregation

logic, resulting in a net performance gain. We also observe a

decrease in the amount of time spent doing real work. This is

due to the improvement in occupancy. Profiling results show

that occupancy for bfs, gc, mstf, mstv, and sp improves by

a geomean of 2.81×, 3.24× and 3.51× for W, B, and K

respectively.

sssp. This benchmark behaves very similarly to the previous

six, with the difference that performance at kernel granularity
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Fig. 9. Breakdown of Execution Time in Kernel Launch Aggregation

aggregation is slightly worse than that at block granularity.

That is because block-granularity aggregation finds a better

occupancy sweet spot, with occupancy improving by 6.35×,

7.95×, and 6.68× for W, B, and K respectively.

bh. This benchmark originally contains long running chil-

dren threads so the kernel launch overhead does not dominate

performance. For this reason, there is no benefit to be gained

from reducing the launch overhead. However, the benchmark

still benefits from improved occupancy as with the previous

seven. In fact, the occupancy improves by a factor of 3.83×,

3.83× and 3.82× for W, B, and K respectively. These factors

are comparable to the factors of improvement in the time spent

performing real work shown in the graph.

ccl. This is a unique benchmark because the parent kernel

only contains a single thread block with two threads. For this

reason, there is not much to be gained from aggregating two

launches into one. Instead, some overhead is incurred from

the aggregation logic without having much value. However,

this benchmark demonstrates that our technique does not

significantly harm benchmarks not benefiting from it.

qt. This is a recursive benchmark and also unique because

only one thread per block launches a kernel. Therefore warp

and block granularity aggregation do not have any impact

on the number of kernels launched – they just incur slightly

extra overhead. This benchmark again demonstrates that our

technique does not harm irrelevant benchmarks. For kernel-

granularity aggregation, the launch overhead is significantly

reduced.

Comparing aggregation with non-CDP, 6 out of the 7

benchmarks having non-CDP versions show speedup from

aggregation ranging from 1.2× to 3.7× (geomean 1.6×) over

the non-CDP versions. The 7th is bh for which the algorithmic

changes required to make it amenable to CDP made the naive

CDP version significantly slower and hard to recover from.

We mention these metrics for quality assurance, but note that

the main advantage of CDP over non-CDP is programmability,

not performance.

Our results do not show enough variation between granu-

larities to motivate employing a selection technique. However,

if needed, one can be employed similar to that in related

work [10].

C. Promotion

The overall throughput improvement of kernel launch pro-

motion is shown in Figure 10 for both Kepler and Maxwell.

Again, the similarity of the results demonstrate the portability

of our technique across architectures, and we only discuss

Kepler results in the rest of this section.

For each benchmark, we show results for the small (S),

medium (M), and large (L) datasets. We compare the original

CDP version with basic promotion (P), promotion with aggre-

gation where the granularity of aggregation is 2 (PA-2) and
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Fig. 11. Profile of Kernel Launch Promotion

128 (PA), promotion with overlap (PO), and promotion with

aggregation and overlap where the granularity of aggregation

is 2 (PAO-2) and 128 (PAO).

Small datasets. The small datasets are designed to create a

chain of only two kernel launches. While not realistic, they

are intended to show how the overhead of the promotion,

aggregation, and overlap logic can cause performance to

degrade if the dataset is not big enough. In particular, we

point out how the larger aggregation granularity (PA and PAO)

results in the most overhead among all when the spawned

children are not used. This extreme case demonstrates the

tradeoff of aggregation granularity in the overhead it adds

to the benchmark to aggregate the kernel launch as well as

terminate unused thread blocks.

Medium datasets. The medium datasets are the maximum

size that can be executed in CDP, beyond which the call depth

limit is no longer sufficient. All benchmarks show speedup at

this scale. PAO on the medium dataset has a geomean speedup

of 5.27× over CDP on the medium dataset. One interesting

observation is that across the benchmarks, PO alone shows

little speedup over P, and PA alone shows moderate speedup

over P, however PAO shows higher speedup greater than the

product of the two. This indicates that aggregation and overlap

mutually benefit each other. We show why shortly when we

discuss profiling results.

Large datasets. For the large datasets, only PA and PAO

can complete while the others are limited by the maximum

call depth. This demonstrates the power of our technique in

overcoming the call depth limitation through vertical aggrega-

tion. PAO on the large datasets achieves a throughput that is

30.44× and 21.81× higher than that achieved by CDP on the

small and medium datasets respectively.

Profiling. The profiling results for each of the promotion

transformations on the medium datasets are shown in Fig-

ure 11. In Figure 11(a), PA and PAO both achieve significantly

better occupancy than the other versions. This demonstrates

the power of the aggregation optimization in improving the

occupancy of dynamic parallelism on the GPU. Despite having

the same occupancy, Figure 11(b) shows that PAO executes

more instructions per second than PA. This demonstrates the



effectiveness of the overlap optimization in making more work

available sooner. It is interesting that the overlap optimization

does not improve instruction throughout when applied alone,

but only when applied with aggregation. That is because

without aggregation, PO has low occupancy so it cannot take

advantage of available instructions.

V. RELATED WORK

Multiple studies [9], [6], [7] have identified the inefficiency

of the current practice of dynamic parallelism, and have

proposed different solutions to overcome these inefficiencies.

A. Kernel Launch Aggregation

Hardware-based Aggregation. Dynamic Thread Block

Launch (DTBL) [9] performs kernel aggregation in hardware

via aggregation tables for buffering kernel calls. This work

is further enhanced with a locality-aware scheduler [28].

Orr et al. [29] earlier proposed a similar hardware-based

aggregation scheme for fine-grain tasks in HSA processors.

Both techniques require hardware modification and are not

available on current GPUs, whereas KLAP is a compiler-based

approach which performs aggregation on existing devices.

Once hardware is available, we expect that hardware- and

software-based aggregation can operate synergistically. On the

one hand, hardware improvements to dynamic parallelism can

improve KLAP’s performance further. In return, KLAP can

also assist hardware techniques by reducing pressure on the

aggregation table/buffer to avoid spilling to memory when

there is not enough table space.

An important difference between KLAP and DTBL is that

KLAP aggregates kernels before they are launched to reduce

the number of launches, whereas DTBL aggregates them after

they are launched but makes the launch more lightweight.

It is plausible that a KLAP-like approach where kernels are

aggregated before launching can also be done in hardware.

Compiler-based Optimization of Dynamic Parallelism.
CUDA-NP [7] is a compiler approach that takes advantage of

nested parallelism within threads by assigning them additional

slave threads in the same thread block to perform their child

tasks. This approach, however, is limited by the parallelism

available within a single thread block.

The most similar work to our kernel launch aggregation

is Free Launch (FL) [10] which performs aggregation-like

transformations and eliminates subkernel calls entirely by

reusing parent threads to perform child computation. Thus,

FL can potentially eliminate more kernel launch overhead and

achieve higher speedup than KLAP. The best FL technique

relies on using persistent threads [30]. In KLAP, we do not

eliminate subkernel calls but rather we demonstrate that CDP

can work efficiently after proper aggregation techniques are

applied, delivering comparable speedups. Moreover, by using

CDP, we avoid the use of persistent threads. This approach

has several advantages.

First, KLAP can handle general cases with variable child

block sizes and does not need to know the maximum child

block size on the host prior to execution. On the other hand,

because FL uses persistent threads, the maximum child block

size must be known on the host prior to execution in order to

ensure that the persistent thread blocks have enough threads to

execute the child blocks. Otherwise, the child threads would

need to be coarsened to reduce the block size or the maximum

possible block size would need to be used, which may not

achieve the best occupancy.

Second, KLAP transforms each kernel separately, indepen-

dent of its caller and callee kernels. This makes our compiler

more scalable and our transformations less complex (hence,

more robust) as the number of kernels involved in the call

hierarchy increases. Our approach already supports multi-

depth and recursive call lineages naturally without the need

for additional support. Moreover, our approach guarantees

memory consistency between parent and child via the semantic

of kernel calls, and does not need to place memory fences

within arbitrary control flow paths of the parent kernel, which

can be both difficult and error-prone.

Third, KLAP does not need to deal with the caveats of

persistent threads. For example, kernels with persistent threads

must grab all the resources they require for the entirety of their

execution, even if they do not need them during some parts

of their lifetime. This means that such kernels cannot share

their resources with co-runner kernels. On the other hand,

KLAP kernels behave like regular kernels and act flexibly in

collaborative environments.

We also note that the speedups we report are not directly

comparable to those reported by FL for two reasons. The

first reason is that we use a faster baseline which uses

private streams more efficiently. The second reason is that

our benchmarks use a variety of children block sizes, whereas

most of FL’s benchmarks use large parent block size (1024)

and small children block sizes (32). Setting the children block

size to 32 enables FL’s transformation to execute multiple child

blocks concurrently in the same parent block (each parent warp

executes a child block). To establish a direct comparison, we

reached out to the authors who shared their bfs code with

us [31]. For the configurations they use, their code is 2.08×
faster than ours. For other configurations, the difference is as

low as 1.26×. This verifies that CDP can indeed be efficient

if the proper compiler transformations are applied.

Other Related Work. Guevara et al. [32] merge a few

independent kernels launched from the host together to achieve

concurrency. This issue was solved by Fermi’s concurrent ker-

nel execution. KLAP merges many identical kernels launched

from the device to reduce the number of launches. Li et

al. [33] propose a set of parallelization templates that optimize

irregular nested loops and parallel recursive computations,

particularly for tree and graph algorithms. KLAP applies

compiler transformations to convert naive CDP into more

efficient aggregated CDP. Ren et al. [34] propose a vector

parallelization transformation to “aggregate” similar tasks in

recursive task-parallel programs for better utilization of vector

hardware. KLAP focuses on aggregation techniques for data-

parallel programs in CUDA or OpenCL.



B. Kernel Launch Promotion

Decoupled Software Pipelining [35] extracts parallelism

from sequential loops by prioritizing execution of instructions

on the (recurrence) critical path. Promotion builds on this

idea and extracts parallelism from long dependence chains by

promoting (thus prioritizing) launches on the critical path.

Producer-consumer patterns on GPUs have received mod-

erate attention. Kernel Weaver [36] fuses producer-consumer

kernels performing relational algebra operations, but this was

before dynamic parallelism was introduced. KLAP specifically

targets producer-consumer patterns expressed with dynamic

parallelism. Our benchmarks include relational operations.

Gómez-Luna et al. [5] introduce a set of GPU algorithms

(called data sliding algorithms) that perform promotion with

aggregation and overlap through libraries. However, Gómez-

Luna et al. do not connect promotion techniques with recursion

using dynamic parallelism for better programmability. KLAP

makes this connection, and introduces the promotion tech-

niques to resolve the depth limitation of dynamic parallelism.

It applies compiler transformations to convert naive CDP to

promoted CDP. KLAP further isolates the effects of promo-

tion, aggregation, and overlap.

VI. CONCLUSION

In this paper, we have presented KLAP, a set of compiler

techniques that improve the performance of programs that use

dynamic parallelism on current hardware. KLAP is comprised

of two main transformation techniques: kernel launch aggre-

gation and kernel launch promotion.

Kernel launch aggregation fuses kernels launched by mul-

tiple threads into a single aggregated kernel launch. It can

be applied at warp, block, or kernel granularity. The benefit

of aggregation is that it reduces the number of launches and

makes kernels coarser which improves device occupancy.

Kernel launch promotion optimizes kernels with producer-

consumer relations by launching children kernels earlier than

their original call site and enforcing dependence via release-

acquire chains. Promotion also enables two further optimiza-

tions: aggregation and overlap. Aggregation vertically fuses

descendants into a single aggregated kernel which improves

occupancy and addresses the problem of limited call depth.

Overlap increases instruction throughput by executing the

independent part of a child kernel concurrently with its parent.

We have shown that kernel launch aggregation at varying

granularities and kernel launch promotion with aggregation

and overlap result in significant speedups on multiple architec-

tures for a variety of applications using dynamic parallelism.
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__global__ void child(float* param1, unsigned int param2) { 
   doChildWork(blockIdx.x, blockDim.x); 
} 
__global__ void parent(float* param1, unsigned int param2) { 
   ... 
   if(cond) { 
       foo(); 
       child <<< gD, bD >>> (arg1, arg2); 
   } 
   ... 
}            Original Code 
 
__global__ void child_agg(float ** __param1_array, unsigned int* __param2_array, 
   unsigned int* __gD_array, unsigned int* __bD_array, char* __mem_pool, 
   unsigned int* __free_idx) { 
   // Identify parent 
   unsigned int __parent_id = __block_find_parent_id(__gD_array, blockIdx.x); 
   // Load params/configs 
   float * param1 = __param1_array[__parent_id]; 
   unsigned int param2 = __param2_array[__parent_id]; 
   unsigned int __blockDim_x = __bD_array[__parent_id]; 
   unsigned int __blockIdx_x = 
       blockIdx.x - ((__parent_id == 0)?0:__gD_array[__parent_id - 1]); 
   // Execute original kernel code 
   if(threadIdx.x < __blockDim_x) { 
       doChildWork(__blockIdx_x, __blockDim_x); 
}  } 
__global__ void parent(float* param1, unsigned int param2, char* __mem_pool, 
   unsigned int* __free_idx) { 
   ... 
   unsigned int __pred0 = (cond)?1:0; 
   if(__pred0) { 
       foo(); 
   } 
   // Setup aggregated kernel launch 
   {   // Allocate memory for param/config arrays 
       unsigned int __i = threadIdx.x; 
       __shared__ char* __local_mem_pool; 
       if(threadIdx.x == 0) { 
           unsigned int __local_mem_pool_size = blockDim.x*(sizeof(float*) 
               + sizeof(unsigned int) + 2*sizeof(unsigned int) /*gD,bD*/); 
           __local_mem_pool =  
               __mem_pool + atomicAdd(__free_idx, __local_mem_pool_size); 
       } 
       __syncthreads(); 
       char* __my_pool = __local_mem_pool; 
       float ** __param1_array = (float **) __my_pool; 
       __my_pool += blockDim.x*sizeof(float *); 
       unsigned int* __param2_array = (unsigned int*) __my_pool; 
       __my_pool += blockDim.x*sizeof(unsigned int); 
       unsigned int* __gD_array = (unsigned int*) __my_pool; 
       __my_pool += blockDim.x*sizeof(unsigned int); 
       unsigned int* __bD_array = (unsigned int*) __my_pool; 
       // Store params/configs 
       __param1_array[__i] = arg1; 
       __param2_array[__i] = arg2; 
       __gD_array[__i] = __pred0 * gD; 
       __bD_array[__i] = bD; 
       // Calculate aggregated configs 
       unsigned int __sum_gD = __block_inclusive_scan(__gD_array); 
       unsigned int __max_bD = __block_max(__bD_array); 
       // Launch aggregated kernel 
       if(threadIdx.x == blockDim.x - 1) { 
           if(__sum_gD > 0) { 
               child_agg <<< __sum_gD, __max_bD >>> (__param1_array, 
                   __param2_array, __gD_array, __bD_array, __mem_pool, 
                   __free_idx); 
}  }   }   } 
                        Transformed Code (block-granularity aggregation) 

Fig. 12. Detailed Code for Block-granularity Aggregation
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