Open-source Tools For GPU Programming in Large Classrooms

Abdul Dakkak, Carl Pearson, Cheng Li {dakkak, pearson, cli99}@illinois.edu

Web GPU

WebGPU

WebGPU Attempts ▼ WebGPU Attempts ▼ Grades -

History

Attempts

WebGPU - The Online Machine Problem Code (Past Deadline)

✓ Welcome to the Algorithmic Techniques for Sca

This site serves as the developmen students develop their assignment:

Tutorial

Questions

Code

Description

```
1 #include <wb.h>
3 #define wbCheck(stmt)
    do {
      cudaError_t err = stmt;
      if (err != cudaSuccess) {
7
        wbLog(ERROR, "Failed to run stmt ", #stmt);
        wbLog(ERROR, "Got CUDA error ... ", cudaGetErrorString(err));
9
        return -1;
10
    } while (0)
13 /// For simplicity, fix #bins=1024 so scan can use a single block and no padding
14 #define NUM_BINS 1024
15
17 GPU main computation kernels
19
20 __global__ void gpu_normal_kernel(float *in_val, float *in_pos, float *out,
                                int grid_size, int num_in) {
    //@@ INSERT CODE HERE
24
    int outIdx = blockIdx.x * blockDim.x + threadIdx.x;
26
    if (outIdx < grid_size) { // Boundary check</pre>
28
29
      // Local accumulator
30
      float out_reg = 0.0f;
32
      // Loop over input elements and compute
      for (int inIdx = 0; inIdx < num_in; ++inIdx) {</pre>
34
        const float in_val_reg = in_val[inIdx];
35
        const float dist = in_pos[inIdx] - (float)outIdx;
36
        out_reg += (in_val_reg * in_val_reg) / (dist * dist);
38
39
      // Commit final result
      out[outIdx] += out_reg;
```

Compile & Run ▼

Originally Designed for MOOC

- → Around 100k students registered for Coursera's Heterogeneous Parallel Programming course
- → Targeted weekly labs
- → Labs auto-graded based with dataset

Around 200 students from UIUC

Advanced CUDA

Around 100 students for UIUC and collaborating institutions

Summer School

Around 100 students from all over the world

Coursera HPP

Around 20,000 students worldwide

Problem

Restrictions with WebGPU

- → Cannot modify programming environment
 - Build scripts / libraries / dataset / ...
 - Cannot use profilers and debuggers
- → User restricted within a sandboxed environment

Intro and Advanced CUDA Project

- → Develop a CUDA version of a CNN
- → Given unoptimized sequential code
- → Significant part of the total grade
- → Around 4-6 weeks to complete
- → Users should be "root"
- → github.com/webgpu/ece408project
- → github.com/webgpu/ece508-convlayer

Pipeline

Jupyter Notebook Interface to RAI

- → Make it easy to develop interactive labs
- → Built on top of Jupyter
- → Implements a client/server that speaks the IPython protocol

```
Jupyter Hello Last Checkpoint: 2 minutes ago (autosaved)
                    Insert Cell Kernel Widgets Help
E + x C F F ↑ V N ■ C Markdown + M CellToolbar
     In [5]: ls -1 /
    Out[5]: got === total 72
             drwxr-xr-x 2 root root 4096 Apr 11 00:59 bin
             drwxr-xr-x
                        2 root root 4096 Apr 10 11:29 boot
             drwxr-xr-x 2 root root 4096 Apr 24 10:50 build
             drwxr-xr-x 11 root root 2820 Apr 24 10:50 dev
             drwxr-xr-x 1 root root 4096 Apr 24 10:50 etc
             drwxr-xr-x 2 root root 4096 Apr 10 11:29 home
                        8 root root 4096 Feb 16 15:15 lib
                        2 root root 4096 Apr 11 00:59 lib64
                        2 root root 4096 Apr 11 00:59 media
                        2 root root 4096 Apr 11 00:59 mnt
             drwxr-xr-x 2 root root 4096 Apr 11 00:59 opt
             dr-xr-xr-x 153 root root 0 Apr 24 10:50 proc
             drwx----- 2 root root 4096 Apr 11 00:59 root
                        1 root root 4096 Apr 12 21:07 run
             drwxr-xr-x 1 root root 4096 Apr 12 21:07 sbin
             drwxr-xr-x 2 root root 4096 Apr 24 10:50 src
             drwxr-xr-x 2 root root 4096 Apr 11 00:59 srv
             dr-xr-xr-x 13 root root 0 Apr 23 23:40 sys
    In [6]: ps -ef
     Out[6]: got === UID
                               PID PPID C STIME TTY
                              0 0 10:50 2
                                                  00:00:00 /bin/bash
                               0 0 10:50 ?
                                                  00:00:00 ps -ef
```

Command line Interface

of time.

* Server has ended your request.

```
* Checking your athentication credentials.
* Preparing your project directory for upload.
* Uploading your project directory. This may take a few minutes.
 358 B / 358 B
                                                                                100.00% 5.23 KiB/s 0s
* Folder uploaded. Server is now processing your submission.
* Your job request has been posted to the queue.
* Server has accepted your job submission and started to configure the container.
* Downloading your code.
* Using ppc64le/gcc as container image.
* Starting container.
* Running echo "Building project"
Building project
* Running gcc /src/main.c
* Running ./a.out
Hello Universe!!
```

* * The build folder has been uploaded to http://s3.amazonaws.com/files.rai-project.com/userdata/buil

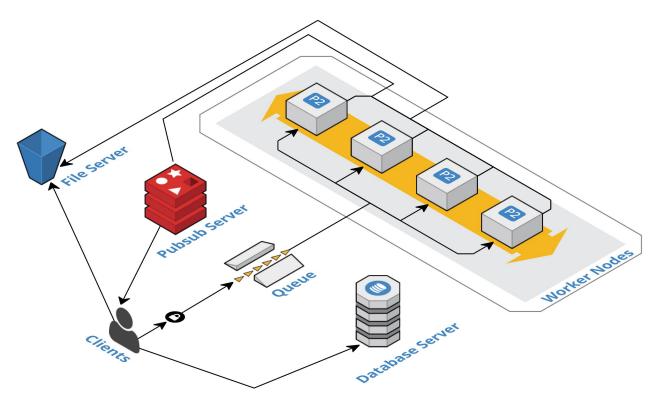
d-377d8ae0-64da-441c-80fb-bff5e717e13f.tar.tar.gz. The data will be present for only a short duration

```
rai:
version: 0.2 # this is required
# image: gcc:6.3.0
image: ppc64le/gcc
resources:
cpu:
architecture: ppc64le
network: false
# gpu:
to # count: 1
commands:
build:
- echo "Building project"
- gcc /src/main.c
- ./a.out
```

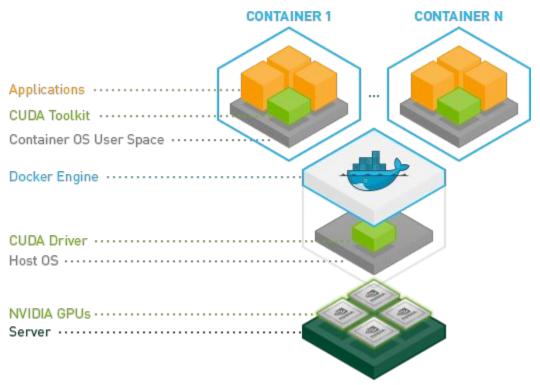
```
1
2  #include "stdio.h"
3
4  int main() {
5    printf("Hello Universe!!\n");
6    return 0;
7  }
```

https://asciinema.org/a/6k5e96itnqu6ekbji60c3kgy4

Output



Demo

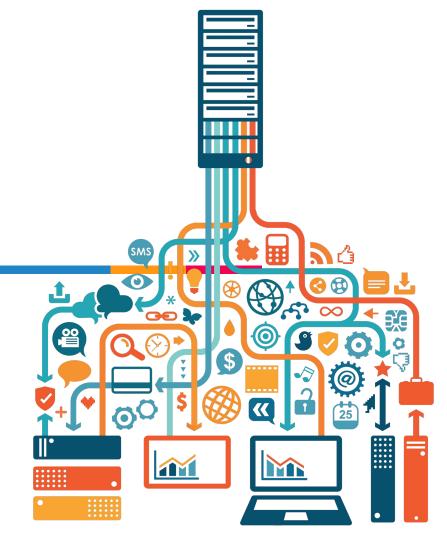


Architecture

Current Deployment Setup

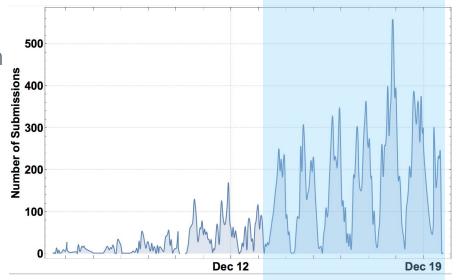
Docker Layer

Wrote our own docker volume plugin


Not Just Project Submission

- A set of reusable components serving as a runtime
- Submission specific code is contained and small (<2KLoc)
 - Client logic is ~400 lines of code
 - Server logic is ~800 lines of code

Service Available Backends


Service	Available backerius
Authentication	Secret, Auth0
Queue	NSQ, SQS , Redis, Kafka, NATS
Database	RethinkDB, MongoDB, MySQL, Postgres, SQLite,
Registry	Etcd, Consul, BoltDB, Zookeeper
Config	Yaml, Toml, JSON, Environment
PubSub	EC, Redis, GCP, NATS, SNS
Tracing	XRay, Zipkin, StackDriver
Logger	StackDriver, JournalD, Syslog, Kinesis
Store	S3, Minio
Container	Docker
Serializer	BSON, JSON

IMPACT

Usage / Pedigree from Last Semester

- → Around 170 students had to use the system for submission
- → Students were using Linux, OSX, Windows, and WLS
- → Students uploaded and generated around 100GB of data

Used 25 Workers

Currently

- → Running on the 2 IBM Minsky machines
- → Used by around 100 people in the 508 class (UIUC and Minnesota)
 - For the last lab
 - For open-ended projects
- → Students developed their own containers solving anything from Matrix factorization (for recommender systems) to Molecular simulations

CarML

CarML - Deploy ML Artifacts w/RAI

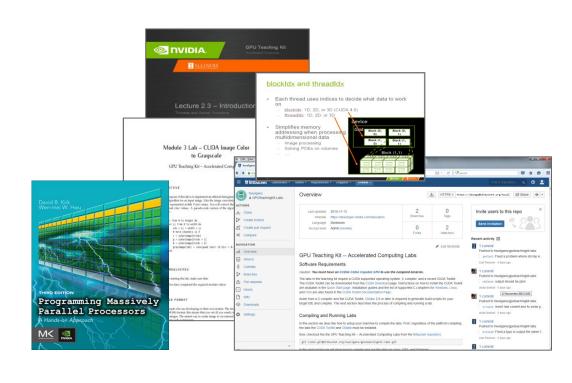
- → Make it easy to deploy ML artifacts
- → Makes it possible for people to test tools / ML models without investing time in installing software dependencies and getting HW resources

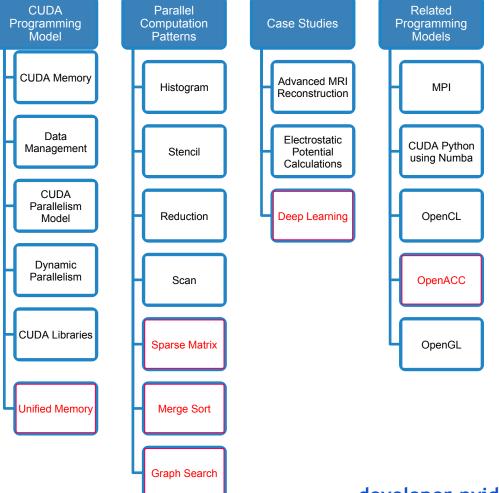
Resources

GPU TEACHING KIT FOR ACCELERATED COMPUTING

Breaking the Barriers to GPU Education in Academia

Co-developed by UIUC and NVIDIA for educators


Comprehensive teaching materials


3rd Ed. PMPP E-book by Hwu/Kirk Lecture slides and notes Lecture videos Hands-on labs/solutions Larger coding projects/solutions Quiz/exam questions/solution

GPU compute resources

NVIDIA online free Qwiklab credits AWS credits

developer.nvidia.com/teaching-kits

developer.nvidia.com/teaching-kits

Questions, Criticisms, and Concerns?

Thank you

Abdul Dakkak, Carl Pearson, Cheng Li

{dakkak,pearson,cli99}@illinois.edu

