
MXNet/

AlexNet

VGG16

Inception v4

DenseNet

Caffe2/

AlexNet

VGG16

Inception v4

DenseNet

Glove/

English

Spanish

French

Chinese

FastText/

English

Spanish

French

Chinese

Client 1

Open

Client 2

Open

Download Model

Client 3

Client 4

Close

TrIMS MRM

Open

Cloud
Storage

TrIMS: Transparent and Isolated Model Sharing for
Low Latency Deep Learning Inference

Design

Motivation

Abdul Dakkak*, Cheng Li*, Simon Garcia de Gonzalo*, Jinjun Xiong†, Wen-Mei Hwu*
{dakkak, cli99, grcdgnz2, w-hwu}@illinois.edu, jinjun@us.ibm.com
*University of Illinois Urbana-Champaign, †IBM Research Yorktown

Deep neural networks (DNNs) have become pervasive within low latency Function as a Service
(FaaS) prediction pipelines, but suffers from two major sources of latency overhead: 1) the
round-trip network latency between FaaS container and a remote model serving process; 2) Deep
Learning (DL) framework runtime instantiation and model loading from storage to CPU or GPU
memory. While persistent model serving schemes solve the latter, they do so by eternally
persisting models within memory — introducing resource waste and increases cost.
We propose TrIMS, a multi-tier software caching layer on top of FaaS worker machines to solve
this problem. TrIMS enables sharing DL models across all levels of the memory hierarchy in the
cloud environment — GPU, CPU, local storage, and remote storage — it does so while
maintaining the isolation constraints, minimizing model-loading overhead, decreasing end-to-end
inference latency, and increasing hardware resource utilization.

Figure 2: Percentage of time spent in model loading,
inference computation, and image preprocessing for “cold
start” online DL inference (batch size = 1) using CPU and
GPU for MXNet, Caffe, Caffe2, and TensorFlow on an
IBM S822LC with Pascal GPUs. The speedup of using
GPU over CPU for the inference compute alone is shown
between the pie charts. Inference time for all frameworks is
dominated by model loading except for small models, such
as SqueezeNet, where the model size is a few megabytes.

58.73

15.37

50.63

45.88

10.45

58.75

9.83

7.63

7.74

7.04

7.2

12.85

8.24

56.92

58.04

51.26

11.55

AlexNet

GoogLeNet

CaffeNet

RCNN-ILSVRC13

Inception-v3

Inception-v4

InceptionBN-21K-v2

ResNet101

ResNet101-v2

ResNet152

ResNeXt50-32x4d

SqueezeNet

SqueezeNet-v1.1

VGG16

VGG16_SOD

VGG19

WRN50-2

MXN
et

CPU
MXN

et
GPU

Caff
e C

PU
Caff

e G
PU

Caff
e2

 C
PU

Caff
e2

 G
PU

TF
 C

PU
TF

 G
PU

8.45

12.9

9.67

9.85

8.87

7.07

3.47

10.63

11.22

8.29

13.33

14.8

14.3

25.1

26.81

25.2

12.18

1.36

2.24

1.03

1.17

3.33

5.17

0.89

2.65

2.64

3.34

1.74

5.82

3.44

5.71

2.19

5.63

2.33

0.77

0.61

0.79

0.75

1.16

1.3

1.03

1.25

1.23

1.39

1.14

0.41

0.41

0.88

0.89

0.93

1.1

2 6 8 12 13 14 16 19 20 21 22 24 28 31 33 36

0
1
2
3
4
5

Sp
ee

du
p

Sp
ee

du
p

(a)

(b)

24 20 6.
0

22 19 5.
5

2 6 8 12 13 14 16 19 20 21 22 24 28 31 33 36

0.0
0.2
0.4
0.6
0.8
1.0
1.2

29 25 7.
0

26 23 6.
5System 1 System 2 System 3 Ideal

Figure 1: An example of using DL inference in the cloud. (1) application code calls functions
from their (2) deployed model or a (3) model catalog. The code is then provisioned onto a
(4) container running on (5) server by the cloud provider. The code performed API calls to
(6) perform AlexNet inference and (7) the scene understanding API. (9) AlexNet is deployed
by users through the cloud provider’s cloud deployment mechanism. To avoid the network
latency, a common practice is to collocate the model within the deployed functions or the
application pipelines. However, collocating the model within the deployed functions
requires the model needs to be loaded for the first function invocation, introducing latency
overhead

Figure 4: A representative sample of the image classification models are chosen and are run on the above
systems to achieve (a) the best case end-to-end time --- when the model has been pre-loaded in GPU memory ---
and (b) the worst case end-to-end time --- when the model misses both the CPU and GPU persistence and needs
to be loaded from disk. The speedups are normalized to end-to-end running time of the model without TrIMS.
The yellow dots show the ideal speedup; the speedup achieved by removing any I/O and data-transfer overhead
--- keeping only the framework initialization and compute. For models 33 and 36, the achieved speedup is
shown on the bar (white) and the ideal speedup is shown on top of the bar (black).

Evaluation

Figure 3: Multiple processes can perform Inter
Process Communication (IPC) requests to the
TrIMS Model Resource Manager (MRM) server;
for example Client1, Client2, and Client3 are
performing an Open request, while Client4 is
performing a Close request. TrIMS’s MRM is
responsible for loading and managing the
placement of the models in GPU memory, CPU
memory, or local disk.

1 2 3 4 5 6 7 8

5
10

50
100

Sp
ee

up
 (L

og
 S

ca
le

)

System 1 System 2 System 3 % of time in compute

20

0

100

60

40

80 C
om

pute %

Figure 5: Large models (enlarged AlexNet and VGG16) are run to achieve the best case end-to-end time ---
when the model has been pre-loaded in GPU memory. The speedups are normalized to the end-to-end
running time of the model without TrIMS. The red dots show the percentage of time spent performing the
compute. We see linear speedup until the inference becomes compute bound.

Conclusion
TrIMS offers advantages to both cloud providers
and users - enabling cloud providers to over-
provision hardware resources and decreasing
TCO, thus users seeing reducing latency and cost
of inference. It is a generic memory sharing
technique for applications that
• span multiple processes, maintaining isolation

between users
• require large amount of constant data resources

to be in situ on the CPU or GPU

