
XSP: Across-Stack Profiling and Analysis of
Machine Learning Models on GPUs

Cheng Li1*, Abdul Dakkak1*, Jinjun Xiong2, Wei Wei3, Lingjie Xu3, Wen-mei Hwu1

1University of Illinois Urbana-Champaign, 2IBM T. J. Watson Research Center, 3Alibaba Group

{cli99, dakkak, w-hwu}@illinois.edu, jinjun@us.ibm.com, {w.wei, lingjie.xu}@alibaba-inc.com

Abstract—There has been a rapid proliferation of machine
learning/deep learning (ML) models and wide adoption of them
in many application domains. This has made profiling and charac-
terization of ML model performance an increasingly pressing task
for both hardware designers and system providers, as they would
like to offer the best possible system to serve ML models with
the target latency, throughput, cost, and energy requirements
while maximizing resource utilization. Such an endeavor is
challenging as the characteristics of an ML model depend on the
interplay between the model, framework, system libraries, and
the hardware (or the HW/SW stack). Existing profiling tools are
disjoint, however, and only focus on profiling within a particular
level of the stack, which limits the thoroughness and usefulness
of the profiling results.

This paper proposes XSP — an across-stack profiling design
that gives a holistic and hierarchical view of ML model execution.
XSP leverages distributed tracing to aggregate and correlate
profile data from different sources. XSP introduces a leveled
and iterative measurement approach that accurately captures the
latencies at all levels of the HW/SW stack in spite of the profiling
overhead. We couple the profiling design with an automated
analysis pipeline to systematically analyze 65 state-of-the-art ML
models. We demonstrate that XSP provides insights which would
be difficult to discern otherwise.

I. INTRODUCTION

Machine learning/deep learning (ML) models are increas-

ingly being used to solve problems across many domains such

as image classification, object detection, machine translation,

etc. This has resulted in a surge of interest in optimizing and

deploying these models on many hardware types including

commodity servers, accelerators, reconfigurable hardware,

mobile/edge devices, and ASICs. As a result, there is an

increasing need to profile and understand the performance

of ML models.

Characterizing ML model inference is complex as its

performance depends on the interplay between different levels

of the HW/SW stack — frameworks, system libraries, and

hardware platforms. Figure 1 shows an example model infer-

ence pipeline on GPUs. At the top, there is the 1 model-

level evaluation pipeline. Components at the model-level

include input pre-processing, model prediction, and output post-

processing. Within the model prediction step are the 2 layer-

level components — layer operators including convolution

(Conv), batch normalization (BN), softmax, etc. Within each

layer are the 3 GPU kernel-level components — a sequence

of CUDA API calls or GPU kernels invoked by the layer.

*The two authors contributed equally to this paper.

Input
Pre-Process

Output
Post-Process

Model
Prediction

…BNData SoftMaxReluConv

Kernel1
Name=ShuffleTensor

Grid=

Kernel2
Name=OffsetComp

Grid=

Kernel3
Name=VoltaCUDNN_128x64

Grid=

GPU Metrics
SP Flop Count=62GFlop

DRAM Read Bytes=12.1MB
DRAM Write Bytes=296MB

Achieved Occupancy=13.2%

Model1

GPU Kernel3

Layer2

Fig. 1. The model-, layer-, and GPU kernel-level profile of MLPerf_-
ResNet50_v1.5 (Table VIII) on Tesla_V100 (Table VII) with batch size
256 using NVIDIA GPU Cloud TensorFlow v19.06. The layers executed are
data (Data), convolution (Conv), batch normalization (BN), relu (Relu), etc.
The 3 GPU kernels from the first Conv layer are shown along with the GPU
metrics of Kernel 3.

Because of the complexities of model inference, one needs a

holistic view of the execution to identify and locate performance

bottlenecks.

Existing profiling tools or methods only provide a partial

view of model execution. To capture a holistic view of model

execution, one has to switch between an array of tools. Take

the current ML profiling on GPUs for example. To measure

the model-level latency, one inserts timing code around the

model prediction step of the inference pipeline. To capture the

layer-level information, one uses the ML framework’s profiling

capabilities [1], [2]. And, to capture GPU kernel information,

one uses GPU profilers such as NVIDIA’s nvprof [3] or

Nsight [4]. The output profiles from the different tools are

disjoint; e.g., the GPU kernels are not correlated with the

layers. As a result, one cannot construct Figure 1 and identify

that the three GPU kernels shown come from the first Conv

layer, for example. This same issue exists when profiling ML

model execution on CPUs.

To correlate profiled events with model layers, vendors

modify ML frameworks and instrument them to work with

their profilers. For example, NVIDIA GPU Cloud [5] (NGC)

hosts frameworks which are instrumented with NVTX [6]

markers. The NVTX markers are added around each layer in

the framework and are captured along with GPU events by

Nvidia’s nvprof and Nsight profilers. However, this approach

only annotates GPU kernel-level information with layer names

and lacks the layer-level profiling reported by the framework.

Moreover, using these instrumented frameworks creates vendor

lock-in — making the profiling and analysis dependent on

326

2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPS47924.2020.00042

the vendor’s frameworks and profilers. This is not an option

for ML models developed or deployed using customized or

non-vendor supported frameworks.

To address the above issue, we propose XSP — an across-

stack profiling design along with a leveled experimentation

methodology. XSP innovatively leverages distributed tracing to

aggregate and correlate the profiles from different sources into

a single timeline trace. Through the leveled experimentation

methodology, XSP copes with the profiling overhead and

accurately captures the profiles at each HW/SW stack level.

Users can use XSP to have a smooth hierarchical step-through

of model performance at different levels within the HW/SW

stack and identify bottlenecks. Unlike existing approaches,

XSP requires no framework modifications. We implement the

profiling design for GPUs and couple it with an across-stack

analysis pipeline. The analysis pipeline consumes the across-

stack profiling trace and performs 15 types of automated

analyses (Table I). These analyses allow us to characterize

ML models and their interplay with frameworks, libraries,

and hardware. The consistent profiling and automated analysis

workflows in XSP enable systematic comparisons of models,

frameworks, and hardware.

In summary, this paper makes the following contributions:

• We propose XSP, an across-stack profiling design that

innovatively leverages distributed tracing to aggregate profile

data from different profiling sources and construct a holistic

view of ML model execution.

• We introduce a leveled experimentation methodology that

allows XSP to accurately capture the profile at each HW/SW

stack level despite the profiling overhead.

• We implement the design for GPU ML model inference and

couple it with an analysis pipeline that performs 15 types of

automated analyses to systematically characterize ML model

execution.

• We conduct comprehensive experiments to show the utility

of XSP. We use 65 state-of-the-art ML models from MLPerf

Inference, AI-Matrix, and TensorFlow and MXNet model

zoos. We evaluate the models on 5 representative systems

that span the past 4 GPU generations (Turing, Volta, Pascal,

and Maxwell) and present performance insights that would

otherwise be difficult to discern absent XSP.

The rest of the paper is organized as follows. Section II

describes the current profiling tools and benchmarking efforts

within the ML and system communities. Section III presents

our design and implementation. Section III-D showcases 15
types of automated analysis that can be performed. Section IV

further evaluates 65 ML models and presents some insights

that are enabled by our design. Section V concludes this paper.

II. ML PROFILING ON GPUS AND RELATED WORK

Researchers leverage different tools and methods to profile

ML model execution at each specific level of the HW/SW

stack on GPUs. Figure 1 illustrates the model-, layer-, and

GPU kernel-level profiling levels on GPUs.

1 Model-level profiling measures the steps within the model

inference pipeline. There exist active efforts by both research

and industry to develop benchmark suites [7], [8] to measure

and characterize models under different workload scenarios. For

model-level profiling, researchers manually insert timing code

around inference steps such as input pre-processing, model

prediction, and output post-processing. Researchers then use

the results as reference points to compare models or systems.

2 Layer-level profiling measures the layers executed by the

ML framework using the framework’s profilers [1], [2]. These

framework profilers are either built-in to the framework or are

community-contributed framework plugins. The layer index,

name, latency, and memory allocations are captured by the

framework profiler as it is executing the layers. Researchers

explicitly enable the framework’s profiler in their code to get

the layer-level profile in a framework-specific format.

3 GPU kernel-level profiling measures the low-level GPU

information. Using NVIDIA’s nvprof and Nsight profilers,

researchers capture the executed GPU kernels information

such as their name, latency and metrics. NVIDIA’s nvprof

and Nsight profilers are built on top of the NVIDIA CUPTI

library [9], which provides an API to capture CUDA API, GPU

kernel, and GPU metric information.

The disconnect between the above profiling levels prohibits

researchers from being able to have a holistic view of model

execution — thus, limiting the types of analysis which can

be performed. Take the MLPerf_ResNet50_v1.5 model

in Figure 1 for example. One can use the aforementioned

profiling tools to get the most time-consuming layer (the 208th

layer which is named conv2d_48/Conv2D) and the most

time-consuming GPU kernel (volta_scudnn_128x64_-
relu_interior_nn_v1). However, because of the lack

of correlation between the GPU kernels and the layers, no

other useful analysis can be performed. E.g, one cannot figure

out the GPU kernels invoked by the most time-consuming

layer, or correlate the most time-consuming GPU kernel to

a specific layer within the model. Knowing the correlation

between layers and GPU kernels enables more meaningful

analyses and informs more optimization opportunities.

Currently, other than modifying framework source code, no

tool or method exists to correlate the GPU kernel-level profile

to the layer-level profile. For example, to be able to correlate

GPU kernels to a certain layer, researchers manually instrument

the framework’s source code with NVTX markers to annotate

layers [10]. The NVTX markers are captured by the nvprof

or Nsight profilers and kernels within the markers’ ranges

belong to the annotated layers. Since the correlation between

GPU kernels and layers is highly desired, NVIDIA provides

modified versions of frameworks as Docker containers (NGC)

where the frameworks are already instrumented with NVTX

markers. While the profile captured in this approach correlates

GPU kernels with layers, it lacks critical layer-level profiling

(such as memory allocations performed by a framework for

a layer). Furthermore, current implementations [10] introduce

barriers which inhibit frameworks from performing certain

optimizations (such as layer-fusion) since the NVTX layer

marking is performed by surrounding each layer with a “start

NVTX marker” layer and an “end NVTX marker” layer. Finally,

327

using vendor frameworks is not an option for profiling ML

models developed with customized frameworks — a common

practice when using user-defined layers.

To overcome the unknown correlation between layers and

GPU kernels without vendor lock-in, there have been ef-

forts [11], [12] to develop fine-grained micro-benchmarks of

representative layers. These micro-benchmarks target convo-

lution or RNN layers and are purposely built for algorithm

developers, compiler writers, and system researchers. Using

layer parameters of popular models, these micro-benchmark

measure each layer in isolation. Thus, they do not reflect how

layers are executed by frameworks. At best, micro-benchmarks

give a lower-bound estimate of how layers would perform in

an ideal scenario. This lower-bound can be used to pinpoint

potential optimizations in the HW/SW stack [13]. Recent

benchmark suites take a multi-tier approach [8], [14] and

provide a collection of benchmarks that cover both end-to-end

model and layer benchmarking.

We believe a profiling design which captures ML model

executions at different HW/SW stack levels and correlates pro-

file data from the different sources — coupled with automated

analyses of the results — would boost the productivity of

researchers and help understand the model/system performance

and identify the bottlenecks. The authors are unaware of any

previous work on the aforementioned across-stack profiling.

Hence, we design XSP.

III. XSP DESIGN AND IMPLEMENTATION

A. Across-Stack Profiling Through Distributed Tracing

To incorporate profile data from different sources and to

create a holistic hierarchical view of ML model execution, XSP

leverages distributed tracing [15]–[17]. This section presents

XSP’s across-stack profiling design.

Distributed tracing is a technique originally conceived for

distributed applications, e.g. the ones built using a micro-

service architecture. In distributed tracing terminology, a timed

operation representing a piece of work is referred to as a span.

Each span contains a unique identifier (used as its reference),

start/end timestamps, and user-defined annotations such as

name, key-value tags, and logs. A span may also contain a

parent reference to establish a parent-child relationship. Each

service in a distributed application has a tracer — some code

to create and publish spans. Spans are published to a tracing
server which is run on a local or remote system. The tracing

server aggregates the spans published by the different tracers

into one application timeline trace.

We observe similarities between distributed tracing and

across-stack profiling. Based on this observation, we propose

XSP, an across-stack profiling design. Profiling across stack

levels can be represented using the distributed tracing termi-

nology by: 1 each profiler within a stack is turned into a

tracer, 2 the profiled events each form a span, 3 each span is

tagged with its stack level, and 4 the parent-child relationship

is encoded using a parent reference. The conversion from the

profiled events to spans can be performed online while the

profiler is running, or can be performed off-line by processing

the output of the profiler. The published spans across the stack

levels are aggregated by a tracing server into a single timeline

trace. Multiple tracers (or profilers) can exist within a stack

level, e.g. both CPU and GPU tracers can co-exist at system

library or hardware level. As a feature supported by distributed

tracing, tracers can be enabled or disabled at runtime.

During span creation, we can, in some cases, associate it

with a parent (e.g. map the layer-level spans to the model

prediction span). In other cases, because of the use of disjoint

profilers, manually associating the child span with its immediate

parent is not possible (e.g. map the GPU kernel-level spans

to the layer-level spans). To reconstruct the missing parent-

child relationship of the profiled events captured by different

profilers, XSP’s profile analysis builds an interval tree [18] and

populates it with intervals corresponding to the spans’ start/end

timestamps. Using the interval tree, XSP reconstructs the parent-

child relationship by checking for interval set inclusion (if the

interval span s1 contains the interval span s2 and the level

of s1 is one level higher than the level of s2, then s1 is a

parent of s2). It is possible that there are parallel events where

it may be ambiguous to determine a span’s parent. In those

cases, XSP requires another profiling run where the parallel

events are serialized to get the missing correlation information.

This can be performed by specifying environment variables

without modifications to the application — e.g. setting either

CUDA_LAUNCH_BLOCKING=1 for GPUs using CUDA or

OMP_NUM_THREADS=1 for CPUs using OpenMP.

To profile asynchronous functions, XSP captures two spans

for each asynchronous function denoting their asynchronous

launch (called a launch span) and future execution (called

an execution span). XSP correlates the two spans using a

correlation identifier which is inserted as a span tag during

span creation. XSP uses the launch span’s parent as the parent

of the asynchronous function and uses the execution span

to get the performance information or find child spans. E.g.,

to profile asynchronous GPU kernels, XSP captures both the

kernel launch and execution spans (as detailed in Section III-B).

B. Across-stack Profiling on GPUs

While the across-stack profiling design presented above is

general, this paper focuses the profiling of ML models on

GPUs across the model, layer, and GPU kernel level:

1 Model-level profiling — To profile at the model gran-

ularity, XSP provides tracing APIs — startSpan and

finishSpan — which can be placed within the inference

code to measure code regions of interest. For example, to

measure the time spent running the model prediction using the

framework C APIs, one places the tracing APIs around the calls

to TF_SessionRun for TensorFlow or MXPredForward
for MXNet. This only requires adding two extra lines in the

user’s inference code.

2 Layer-level profiling — To profile at the layer granularity,

XSP uses the ML framework’s existing profiling capability.

During runtime, XSP enables the framework profiler, con-

verts the profile results into spans, and publishes them to

the tracing server. In TensorFlow, enabling layer profiling

328

…BN
4.2ms

Data
1.2ms

SoftMax
0.1ms

Relu
2.1ms

Conv
5.1ms

ShflTens
0.1ms

OffstComp
0ms

VoltaCUDNN_128x64
4.9ms

M/L

Input
Pre-Process

Output
Post-Process

Model
Prediction

275.1ms
M

Input
Pre-Process

Output
Post-Process

Model
Prediction

275.1ms Pr
ofi

lin
g

O
ve

rh
ea

d
15

7m
s

…BNData SoftMaxReluConv
5.1ms

M/L/G

Input
Pre-Process

Output
Post-Process

Model
Prediction

275.1ms Pr
ofi

lin
g

O
ve

rh
ea

d
21

5.
2m

s

Pr
ofi

lin
g

O
ve

rh
ea

d
0.

24
m

s

M: Model-level Profiling L: Layer-level Profiling G: GPU Kernel-level Profiling

Fig. 2. XSP profiles for MLPerf_ResNet50_v1.5 with batch size 256
on Tesla_V100 (Table VI) with the model-level (M), model-/layer-level
(M/L), and model-/layer-/GPU kernel-level (M/L/G) profiling. At each level,
the green components correctly measure the latency whereas the rest incur
profiling overhead.

requires calling the framework’s prediction function with the

profiling option enabled. This option is controlled by the

RunOptions.TraceLevel setting which is passed to the

TF_SessionRun function in TensorFlow. In MXNet, the

MXSetProfilerState function enables and disables layer

profiling. Similar mechanisms exist for other frameworks such

as Caffe, Caffe2, PyTorch, and TensorRT. The layer spans

are set to be the children of the model prediction span, and

hence each layer are directly correlated to the model prediction

step. Since XSP leverages the existing framework’s profiling

capabilities, profiling at the layer level require no modification

to the framework’s source code.

3 GPU kernel-level profiling — To obtain the GPU profile,

XSP uses NVIDIA’s CUPTI library [9]. The CUPTI library

captures the CUDA API calls, GPU activities (GPU tasks such

as kernel executions and memory copies), and GPU kernel

metrics (low-level hardware counters such as GPU achieved

occupancy, flop count, and memory read/write for GPU kernels).

Similar to Nsight or nvprof (which are built on top of CUPTI),

one can specify with XSP which CUDA APIs, GPU activities,

or metrics to capture. At runtime, XSP converts the captured

CUPTI information into spans and publishes them to the tracer

server (asynchronously to avoid added overhead). If profiling

GPU metrics is enabled, the metrics are added as metadata to

the corresponding kernel’s span.

GPU kernels are often launched asynchronously by the

ML frameworks or libraries. Therefore, for each kernel

two spans are created within the XSP timeline. XSP uses

the CUPTI callback API to capture the CUDA API call

cudaLaunchKernel as the launch span. XSP uses the

CUPTI activity API to capture the effective kernel duration

as the execution span. XSP uses the kernel launch span to

associate it with the parent layer span and use the execution

span to get the kernel performance information. The two

spans are correlated by the correlation_id provided by

CUPTI. Since this correlation can potentially be expensive, we

perform correlation during profile analysis which aggregates

the information from two GPU kernel spans.

C. Dealing with Profiling Overhead through Leveled Experi-
mentation

Profiling always comes with overhead. We observe that

creating spans online adds negligible overhead per span (and

no overhead exists if the profile is converted offline). Thus, XSP

incurs only the profiling overhead introduced by the integrated

profilers. For example, layer-level profiling adds overhead

to the model prediction depending on how many layers are

executed. And as with the existing NVIDIA profilers, the

GPU-level profiling incurs overhead, which can be substantial

depending on if GPU metric profiling is enabled and the types

of GPU metrics to capture. GPU memory metrics are especially

expensive to profile and can slow down execution by over 100×.

This is due to the limited number of GPU hardware performance

counters, which require GPU kernels to be replayed multiple

times to capture the user-specified metrics.

Profilers at a specific stack level accurately capture the events

within that level. And, since tracers in XSP can be enabled or

disabled depending on the characterization target, the profiling

overhead can be controlled by picking the profiling level. For

an event at level n (where level 1 is the model level), the

profiling overhead introduced at level n+ 1 can be quantified

by subtracting the latency of the event when profilers up to

level n are enabled from the latency when profilers up to level

n + 1 are enabled. We refer to the profiling practice which

uses traces from multiple runs with different profiling levels

as leveled experimentation. Through leveled experimentation,

XSP gets accurate timing of profiled events at all stack levels.

To demonstrate the profiling overhead and the leveled

experimentation, we use the MLPerf_ResNet50_v1.5
model running on the Tesla_V100 system (Table VII) as an

example. Figure 2 shows the model’s XSP profiles at different

profiling levels. We can enable the model-level profiling (M)

to get the baseline model prediction latency of 275.1ms. To

further measure the latency of each layer, we enable both the

model- and layer-level profiling (M/L). While the layer-level

profiling adds overhead to the model prediction latency, it

accurately captures the latency of each layer. We can quantify

this overhead by subtracting the model prediction latency in

the model-level profile from the model prediction latency in the

model-/layer-level profile. We find that the layer-level profiling

introduces a 157ms overhead. We can further perform the

GPU kernel-level profiling along with the model-/layer-level

profiling to get a hierarchical view of the model execution

(M/L/G). Enabling the GPU kernel-level profiling adds extra

overhead to the model prediction latency — making the model

prediction step (with the added overhead) take 490.3ms. If

329

TABLE I
THE 15 ANALYSES PERFORMED BY XSP. THE ANALYSES REQUIRE

PROFILING INFORMATION FROM ONE OR MORE LEVELS (M: MODEL-LEVEL,
L: LAYER-LEVEL, AND G: GPU KERNEL-LEVEL).

Analysis
Profiling

Levels
End-to-End

Benchmarking
Framework

Profilers
NVIDIA
Profilers XSP

A1 Model information table M � � � �

A2 Layer information table L � � � �

A3 Layer latency L � � � �

A4 Layer memory allocation L � � � �

A5 Layer type distribution L � � � �

A6 Layer latency aggregated by type L � � � �

A7 Layer memory allocation aggregated by type L � � � �

A8 GPU kernel information table G � � � �

A9 GPU kernel roofline G � � � �

A10 GPU kernel information aggregated by name table G � � � �

A11 GPU kernel information aggregated by layer table L/G � � � �

A12 GPU metrics aggregated by layer L/G � � � �

A13 GPU vs Non-GPU latency L/G � � � �

A14 Layer roofline L/G � � � �

A15 GPU kernel information aggregated by model table M/G � � � �

1 2 4 8 16 32 64 128 256 512
0

200

400

600

800

BatchSize

In
pu
ts
/sec

Fig. 3. The throughput of MLPerf_ResNet50_v1.5 across batch sizes
on Tesla_V100.

we look at the first convolution layer, the GPU profiling of

the 3 child kernels incurs a 0.24ms overhead. We verified the

layer and GPU kernel latencies measured by XSP against what

framework and NVIDIA’s profilers report.

D. Across-Stack Analysis

We couple XSP with an automated analysis pipeline which

consumes the profiling traces published to the tracing server.

We define 15 analyses that capture across-stack characteristics

of ML model executions on GPUs as listed in Table I. The

15 analyses are grouped into 3 categories based on the pro-

filing information required. Since meaningful characterization

requires multiple runs, the pipeline takes traces from a user-

defined number of evaluations, correlates the information,

and computes the trimmed mean value (or other user-defined

statistical summaries) for the same performance value (e.g.

latency) across runs. This automated analysis pipeline allows

users to systematically and efficiently characterize and compare

ML models.

To illustrate the analyses, we use the TensorFlow MLPerf_-
ResNet50_v1.5 model (ID = 7 in Table VIII) from the

MLPerf Inference v0.5 release. The model is run within the

NGC TensorFlow container v19.06 on an AWS P3 [19] instance

(Tesla_V100 in Table VII). The P3 instance is equipped with

a Tesla V100-SXM2 GPU and achieves a peak throughput of

15.7 TFlops and 900 GB/s global memory bandwidth. Batch

size 256 is used in Sections III-D2 and III-D3, since the model

achieves maximum throughput at that batch size. Using XSP,

one can perform analyses that are either difficult or impossible

using existing tools or methods.

1) Using Model-level Profile: Both model throughput and

latency are important to researchers who want to understand

a model’s end-to-end performance. Using only the model-

level profiling, XSP automates the computation of a model’s

TABLE II
THE TOP 5 MOST TIME CONSUMING LAYERS IN A2 FOR

MLPERF_RESNET50_V1.5 WITH BATCH SIZE 256 ON TESLA_V100. IN

TOTAL, THERE ARE 234 LAYERS OF WHICH 143 TAKE LESS THAN 1 MS.

Layer
Index

Layer
Name

Layer
Type

Layer
Shape

Latency
(ms)

Alloc Mem
(MB)

208 conv2d_48/Conv2D Conv2D 〈256, 512, 7, 7〉 7.59 25.7

221 conv2d_51/Conv2D Conv2D 〈256, 512, 7, 7〉 7.57 25.7

195 conv2d_45/Conv2D Conv2D 〈256, 512, 7, 7〉 5.67 25.7

3 conv2d/Conv2D Conv2D 〈256, 64, 112, 112〉 5.08 822.1

113 conv2d_26/Conv2D Conv2D 〈256, 256, 14, 14〉 4.67 51.4

(a)

(b)

(c)

Fig. 4. Layer statistics for MLPerf_ResNet50_v1.5 on Tesla_V100:

(a) A5 layer type distribution, (b) A6 layer latency aggregated by type, (c)

A7 layer memory allocation aggregated by type.

throughput and latency across batch sizes and generate a

A1 model information table. XSP then computes the model’s

optimal batch size given a user-defined metric (e.g. a latency

target). By default XSP computes the optimal batch size by

evaluating the model across batch sizes and selecting the batch

size where doubling it does not increase the model’s throughput

by more than 5%. Figure 3 shows the throughput of MLPerf_
ResNet50_v1.5 across batch sizes. XSP computes the

optimal batch size as 256 where the model achieves a maxi-

mum throughput of 930.7 images/second. The corresponding

batch latency is 275.05ms. Absent XSP, researchers insert

timing functions around the model prediction code, perform

multiple evaluations, and write scripts to compute the model’s

throughput, latency, and optimal batch size.

2) Using Model- and Layer-level Profiles: Using both

the model- and layer-level profiles enables characterization

of layers executed by the ML framework. The measured

layers may be different from the ones statically defined in

the model graph, since a framework may perform model

optimization at runtime. Using the data captured, XSP generates

a A2 layer information table reporting index, name, shape,

latency, and allocated memory of all the layers. For example,

Table II shows the top 5 most time-consuming layers for

MLPerf_ResNet50_v1.5.

XSP further uses the profile data to visualize both the

A3 latency per layer and A4 allocated memory per layer

in layer execution order. Figures 5 shows the two analyses

for MLPerf_ResNet50_v1.5 at the optimal batch size. We

observe that a layer latency and memory allocation trend exists

330

(a) (b)
Beginning Middle

(
End Beginning Middle

(b
End

Fig. 5. The (a) A3 latency and (b) A4 memory allocation for each layer in MLPerf_ResNet50_v1.5 with batch size 256 on Tesla_V100. To
understand the performance trend, we divide the model execution into 3 intervals based on the layer index: beginning, middle, and end.

— the model latency can be mostly attributed to the early

executed layers. Similarly, the memory allocation is high for

the early stage of the model execution, and less so during the

middle and end stages.d

We can group the layer information by layer type to derive

useful layer execution statistics such as A5 the number of

times each layer type is executed (Figure 4a), the A6 layer

latency aggregated by type (Figure 4b), and the A7 layer

memory allocation aggregated by type (Figure 4c). We observe

that MLPerf_ResNet50_v1.5 mostly comprises of Add,

Conv2D, Mul, and Relu layers. This is because of the ResNet

modules which have the pattern of Conv → BN → Relu. The

ResNet modules get executed by TensorFlow as a Conv2D
→ Mul → Add → Relu layer sequence. This same group

of layers dominates both latency and memory allocation, with

Conv2D being the most time-consuming layer type.

Absent XSP, researchers use the framework profiler to

gather layer-level information. Through manually parsing

and aggregating the profiling output across runs, researchers

can perform A2-7. However, since the output format of a

framework profiler is framework-dependent, the analysis scripts

developed in this case are also framework-specific.
3) Using Model-, Layer-, and GPU Kernel-level Profiles:

To distill fine-grained performance information, XSP uses

model-, layer- and GPU kernel-level profiles to generate a

A8 GPU kernel information table summarizing all the kernels

in the model prediction. An example is shown in Table III

where the top 5 most time consuming GPU kernel calls

for MLPerf_ResNet50_v1.5 are listed. The 5 kernels

perform either matrix multiplication or convolution. All the

GPU metrics supported by the NVIDIA profiling tools [20]

can be captured through XSP, here we focus on flop_-
count_sp, dram_read_bytes, dram_write_bytes,

and achieved_occupancy:

• flop_count_sp — the total number of single-precision

floating-point operations executed by a kernel.

• dram_read_bytes — the total number of bytes read

from the GPU’s DRAM to its L2 cache in a kernel.

• dram_write_bytes — the total number of bytes written

from the GPU’s L2 cache to its DRAM in a kernel.

• achieved_occupancy — the ratio of the average active

warps per active cycle to the maximum number of warps per

streaming multiprocessor. The achieved_occupancy is

an indicator to the level of parallelism for a kernel.

Using both the kernel flop and memory access

metrics, XSP calculates the kernel arithmetic intensity

and arithmetic throughput. These parameters are used

to perform GPU kernel roofline [21] analysis. A

(/)

(
/)

Fig. 6. The A9 roofline analysis for the GPU kernels in MLPerf_-
ResNet50_v1.5 with batch size 256 on Tesla_V100. Kernels within
the blue region are memory-bound, whereas the ones within the orange region
are compute-bound.

kernel’s arithmetic intensity is the ratio between the

number of flops and the number of memory accesses:

arithmetic_intensity = flop_count_sp
dram_read_bytes+dram_write_bytes .

A kernel’s arithmetic throughput is the ratio

between the number of flops and the latency:

arithmetic_throughput = flop_count_sp
kernel latency . Using the

GPU’s theoretical FLOPS and memory bandwidth, we

compute the ideal arithmetic intensity using the equation:

ideal_arithmetic_intensity = peak_FLOPS
memory_bandwidth . The

Tesla_V100 GPU, for example, has a peak throughput of

15.7 TFLOPS and a global memory bandwidth of 900 GB/s,

hence an ideal arithmetic intensity of 15.7 TFLOPS
900 GB/s = 17.44

flops/byte. A kernel is memory-bound if its arithmetic

intensity is less than the GPU’s ideal arithmetic intensity

(blue region) and is compute-bound otherwise (orange region).

A9 visualizes the roofline analysis of all the GPU kernels

(shown in Figure 6). As expected, the most time-consuming

kernels are convolution kernels which are all compute-bound.
XSP creates a table of A10 GPU kernel information

aggregated by name, as shown in Table IV. The aggre-

gated kernel latency, flops, and DRAM reads and writes are

calculated as the sum of all the kernel instances with the

same name. The aggregated kernel achieved occupancy is

calculated as the weighted sum (by kernel latency) of achieved

occupancy of all the kernel instances with the same name.

The aggregated kernel arithmetic intensity and throughput are

calculated using the aggregated flops and memory accesses.

For MLPerf_ResNet50_v1.5, we observe that the most

time consuming GPU kernel is volta_scudnn_128×64_-
relu_interior_nn_v1 from the cuDNN [22] library,

which is compute-bound and takes 30.87% of the overall model

prediction latency. The 2nd and 3rd most time consuming kernels

are scalar_product_op and scalar_sum_op and are

defined by the Eigen [23] library, are memory-bound, and take

10.33% and 9.59% of the model inference latency, respectively.
Since each GPU kernel can be correlated to the layer that

invokes it, XSP aggregates the information of GPU kernels

331

TABLE III
THE TOP 5 MOST TIME-CONSUMING KERNELS IN A8 FOR MLPERF_RESNET50_V1.5 ON TESLA_V100. IN TOTAL, 375 KERNELS ARE INVOKED OF

WHICH 284 TAKE LESS THAN 1ms.

Kernel Name
Layer
Index

Layer
Kernel

Latency
(ms)

Kernel
Gflops

Kernel
DRAM
Reads
(MB)

Kernel
DRAM
Writes
(MB)

Kernel
Achieved

Occupancy
(%)

Kernel
Arithmetic
Intensity

(flops/byte)

Kernel
Arithmetic

Throughput
(Tflops/s)

Memory
Bound?

volta_cgemm_32x32_tn 221 6.04 77.42 40.33 43.86 12.18 876.97 12.82 �
volta_cgemm_32x32_tn 208 6.03 77.42 43.93 43.81 12.19 841.59 12.83 �
volta_scudnn_128x128_relu_interior_nn_v1 195 5.48 59.20 27.71 8.40 15.49 1,563.30 10.80 �
volta_scudnn_128x64_relu_interior_nn_v1 3 4.91 62.89 11.55 283.05 13.20 203.58 12.81 �
volta_scudnn_128x128_relu_interior_nn_v1 57 4.56 59.24 34.83 37.64 15.15 779.55 12.99 �

TABLE IV
THE TOP 5 MOST TIME-CONSUMING KERNELS IN A10 FOR MLPERF_RESNET50_V1.5 ON TESLA_V100. 30 UNIQUE KERNELS ARE INVOKED IN TOTAL.

Kernel Name
Kernel
Count

Kernel
Latency

(ms)

Kernel
Latency

Percentage
Kernel
Gflops

Kernel
DRAM
Reads
(MB)

Kernel
DRAM
Writes
(MB)

Kernel
Achieved

Occupancy
(%)

Kernel
Arithmetic
Intensity

(flops/byte)

Kernel
Arithmetic

Throughput
(Tflops/s)

Memory
Bound?

volta_scudnn_128x64_relu_interior_nn_v1 34 84.95 30.87 1,053.63 4,429.64 5,494.22 22.58 101.25 12,40 �
Eigen::TensorCwiseBinaryOp<scalar_product_op> 52 28.43 10.33 2.85 4,181.23 6,371.12 49.72 0.26 0.10 �
Eigen::TensorCwiseBinaryOp<scalar_sum_op> 51 26.38 9.59 2.64 4,063.49 6,052.22 49.69 0.25 0.10 �
Eigen::TensorCwiseBinaryOp<scalar_max_op> 48 24.71 8.98 0 3,773.84 5,699.95 98.39 0 0 �
volta_scudnn_128x128_relu_interior_nn_v1 4 23.02 8.37 276.64 671.68 335.01 15.96 262.08 12,02 �

within each layer and builds a table of A11 GPU kernel

information aggregated by layer. A layer’s kernel latency,

flops, DRAM reads and writes are calculated by adding the

corresponding values of all the kernels invoked by that layer.

The layer’s achieved occupancy is calculated as the weighted

sum (by kernel latency) of the achieved occupancy of all the

kernels within the layer. As an example, Table V shows the

aggregated GPU kernel information for the top 5 most time-

consuming layers in MLPerf_ResNet50_v1.5.

Using this data, XSP visualizes the A12 total flops, DRAM

reads and writes per layer (shown in Figure 7 (a), (b) and (c)

respectively). Subtracting a layer’s total GPU kernel latency

from the its overall latency computes the A13 time not spent

performing GPU computation. We call this difference the

layer’s non-GPU latency. Figure 8 shows the layer’s GPU and

non-GPU latency normalized to the overall layer latency for

MLPerf_ResNet50_v1.5. The layer arithmetic intensity

and throughput are calculated using the layer’s total flops and

memory accesses. A A14 roofline analysis of all the layers

is performed in Figure 9. We observe that the Conv2D layers

are the most compute and memory intensive. The Conv2D,

MatMul, BiasAdd, and Softmax layers are compute-bound,

whereas the other layers (Add, Mul, and Relu) are memory-

bound.

XSP aggregates all the GPU kernel information within a

model and computes a table of the A15 total GPU kernel

latency, flop, and memory access information for the model

(shown in Table VI). Similar to the layer aggregation, the model

kernel latency, flops, DRAM reads and writes are calculated as

the sum of all kernels invoked by the model. XSP computes

the model’s achieved occupancy as the weighted sum (by

kernel latency) of the achieved occupancy of all the kernels

invoked. The model’s arithmetic intensity and throughput are

calculated using the model’s total flops and memory accesses.

This information is used to classify the entire model as either

compute- or memory-bound.

Figure 10 visualizes the roofline analysis for MLPerf_-
ResNet50_v1.5 across batch sizes on Tesla_V100. We

see that the model is compute-bound except for batch sizes

16 and 32 where it is memory-bound. Looking into the

data in A2,8,10 we find that the kernels invoked for the

convolution layers sometimes vary across batch sizes. This

is because the cuDNN library relies on heuristics to choose

the algorithm used for a convolution layer. The heuristics

depend on the layer input parameters, available memory,

etc. For batch sizes less than 16, the cuDNN convolution

API uses the IMPLICIT_GEMM algorithm and invokes the

GPU kernel cudnn::detail::implicit_convolve_
sgemm. This kernel has high arithmetic intensity and dominates

the model’s latency. For batch sizes greater than 16, the cuDNN

convolution API chooses a different algorithm — IMPLICIT_
PRECOMP_GEMM algorithm, which invokes the GPU kernel

volta_scudnn_128x64_relu_interior_nn_v1. Al-

though this kernel is compute-bound, for batch sizes less than

64 it has a relatively low arithmetic intensity. Thus, for both

batch sizes 16 and 32, this kernel’s arithmetic intensity is

not high enough to compensate for the effects of the other

memory-bound kernels. The result is that the overall model is

memory-bound for batch sizes 16 and 32. We also observe that

the overall GPU achieved occupancy for the model increases

as the batch size approaches the optimal batch size.

A8 and A10 are currently the most common types of

analyses performed by researchers using NVIDIA’s profilers.

Less common, but still possible, analyses without XSP are

roofline analyses A9 and A15 as they require non-trivial

scripts. The scripts parse and aggregate the GPU profilers’

outputs across multiple model evaluations to compute the

roofline model. Analyses A11-14 cannot be performed using

existing tools as they require both the layer- and GPU kernel-

level profiles and their results to be correlated.

332

(a) (b) (c)

Fig. 7. The A12 total GPU kernel (a) flops, (b) DRAM reads, and (c) DRAM writes per layer for MLPerf_ResNet50_v1.5 with batch size 256 on
Tesla_V100.

 N
or

m
ali

ze
d

La
te

nc
y

Fig. 8. The A13 normalized GPU and Non-GPU latency per layer for
MLPerf_ResNet50_v1.5 with batch size 256 on Tesla_V100.

TABLE V
THE TOP 5 MOST TIME-CONSUMING LAYERS IN A11 FOR

MLPERF_RESNET50_V1.5 ON TESLA_V100.

Layer
Index

Layer
Latency

(ms)

Kernel
Latency

(ms)
Layer
Gflops

Layer
DRAM
Reads
(MB)

Layer
DRAM
Writes
(MB)

Layer
Achieved

Occupancy
(%)

Layer
Arithmetic
Intensity

(flops/byte)

Layer
Arithmetic

Throughput
(Tflops/s)

Memory
Bound?

208 7.59 7.45 79.74 362.67 548.50 19.43 83.46 10.70 �
221 7.57 7.43 79.74 368.11 551.70 19.43 82.68 10.73 �
195 5.67 5.55 59.20 36.51 17.99 15.80 1,036.10 10.67 �
3 5.08 4.91 62.89 11.55 284.21 13.23 202.78 12.80 �
113 4.67 4.57 59.22 76.65 21.36 15.31 576.17 12.94 �

E. Extensibility

Care was taken to ensure that XSP’s design is extensible.

Other profiling tools or methods can be integrated into XSP

by implementing XSP’s tracer interface. Thus, XSP can be

extended with more tracers at each stack level or extended to

capture more stack levels. For example, one can integrate CPU

profilers into XSP to capture both CPU and GPU information

within the same timeline. One can also add a ML library

profiling level between the layer- and GPU kernel-level to

measure the cuDNN API calls. Adding an application profiling

level above the model level to measure whole applications

(possibly distributed and using more than one ML model) is

naturally supported by XSP as it uses distributed tracing. As

new profilers are introduced into XSP, one can add more types

of analyses to the automated analysis pipeline.

IV. EVALUATION

We profile and characterize 55 state-of-the-art TensorFlow

ML models (Table VIII) selected from the MLPerf Inference [7],

TABLE VI
THE A15 GPU KERNEL INFORMATION AGGREGATED WITHIN

MLPERF_RESNET50_V1.5 ACROSS BATCH SIZES ON TESLA_V100.

Batch
Size

Model
Latency

(ms)

Kernel
Latency

(ms)
Model
Gflops

Model
DRAM
Reads
(MB)

Model
DRAM
Writes
(MB)

Model
Achieved

Occupancy
(%)

Memory
Bound?

1 6.21 5.01 7.94 192.49 194.16 22.65 �
2 6.83 5.93 16.08 290.41 354.54 22.47 �
4 8.51 7.68 30.95 659.11 720.15 26.39 �
8 12.80 11.60 60.66 1,676.07 1,496.81 31.97 �

16 21.90 20.14 118.04 3,969.19 3,024.09 35.58 �
32 40.03 37.14 232.78 7,711.50 5,823.97 38.76 �
64 74.03 67.72 429.08 10,932.22 9,268.27 43.18 �

128 142.89 131.79 873.63 16,071.32 16,105.40 44.48 �
256 275.05 254.25 1,742.39 23,185.11 31,095.45 43.15 �

(/)

(
/)

Fig. 9. The A14 roofline analysis for all the layers in MLPerf_ResNet50_-
v1.5 with batch size 256 on Tesla_V100.

(/)
(

/)
Fig. 10. The roofline analysis for MLPerf_ResNet50_v1.5 across batch

sizes on Tesla_V100 using A15 .

AI-Matrix [8], and TensorFlow model zoo [24]–[26]. The mod-

els solve computer vision tasks including image classification,

object detection, instance segmentation, semantic segmentation,

and super resolution. To compare TensorFlow against MXNet,

we select an additional 10 MXNet models from the MXNet

Gluon model zoo [27] (Table X) that are comparable to the

TensorFlow models. We evaluated the models using NGC

TensorFlow container v19.06, and NGC MXNet container

v19.06 on 5 representative GPU systems listed in Table VII.

This section presents insights about the models, frameworks,

and GPU systems using the XSP’s analyses described in

Section III-D.

A. Model Evaluation

Using the model- and layer-level profiling data, we look at

all 55 TensorFlow models in Table VIII. Models solving the

same task are clustered together and are then sorted by their

reported accuracy. The table shows each model’s accuracy,

model graph size, online latency (batch size is 1), maximum

throughput, optimal batch size (described in Section III-D1),

and percentage of latency attributed to convolution layers.

Model latency percentage of convolution layers — Using

the model- and layer-level profile data, we calculate the

percentage of model latency attributed to convolution lay-

ers (Tensorflow’s Conv2D and DepthwiseConv2dNative
layers) with each model’s optimal batch size on Tesla_-
V100. This is shown in the last column of Table VIII. We

observe that: 1 the convolution layer latency percentage ranges

between 36.3% and 80.2% for image classification models.

This suggests that convolution layers still dominate (but not

exclusively) the latency of image classification models — even

333

TABLE VII
FIVE SYSTEMS WITH TURING, VOLTA, PASCAL, AND MAXWELL GPUS ARE SELECTED FOR EVALUATION. WE CALCULATE THE IDEAL ARITHMETIC

INTENSITY OF EACH SYSTEM USING THE THEORETIC FLOPS AND MEMORY BANDWIDTH REPORTED BY NVIDIA.

Name CPU GPU
GPU

Architecture
Theoretical

FLOPS (TFLOPS)
Memory Bandwidth

(GB/s)
Ideal Arithmetic

Intensity (flops/byte)

Quadro RTX Intel Xeon E5-2630 v4 @ 2.20GHz Quadro RTX 6000 Turing 16.3 624 26.12

Tesla V100 (AWS P3) Intel Xeon E5-2686 v4 @ 2.30GHz Tesla V100-SXM2-16GB Volta 15.7 900 17.44

Tesla P100 Intel Xeon E5-2682 v4 @ 2.50GHz Tesla P100-PCIE-16GB Pascal 9.3 732 12.70

Tesla P4 Intel Xeon E5-2682 v4 @ 2.50GHz Tesla P4 Pascal 5.5 192 28.34

Tesla M60 (AWS G3) Intel Xeon E5-2686 v4 @ 2.30GHz Tesla M60 Maxwell 4.8 160 30.12

TABLE VIII
WE USE 55 TENSORFLOW MODELS FROM MLPERF, AI-MATRIX, AND TENSORFLOW SLIM, DETECTION ZOO, DEEPLAB FOR EVALUATION. THESE MODELS

ARE SORTED BY THE REPORTED ACCURACY AND SOLVE DIFFERENT TASKS: IMAGE CLASSIFICATION (IC), OBJECT DETECTION (OD), INSTANCE

SEGMENTATION (IS), SEMANTIC SEGMENTATION (SS), AND SUPER RESOLUTION (SR). WE MEASURED THE PEAK THROUGHPUT ACHIEVED ON

TESLA_V100 AND FIND THE OPTIMAL BATCH SIZE FOR EACH MODEL. ONLINE LATENCY IS DEFINED AS THE MODEL LATENCY FOR BATCH SIZE 1. GRAPH

SIZE IS THE SIZE OF THE FROZEN GRAPH FOR A MODEL.

ID Name Task Accuracy
Graph Size

(MB)
Online

Latency (ms)
Max Throughput

(Inputs/Sec)
Optimal

Batch Size
Convolution

Percentage (%)

1 Inception ResNet v2 IC 80.40 214 23.24 346.6 128 68.8

2 Inception v4 IC 80.20 163 17.29 436.7 128 75.7

3 Inception v3 IC 78.00 91 9.85 811.0 64 72.8

4 ResNet v2 152 IC 77.80 231 14.05 466.8 256 60.5

5 ResNet v2 101 IC 77.00 170 10.39 671.7 256 60.9

6 ResNet v1 152 IC 76.80 230 13.70 541.3 256 69.6

7 MLPerf ResNet50 v1.5 IC 76.46 103 6.22 930.7 256 58.7

8 ResNet v1 101 IC 76.40 170 10.01 774.7 256 69.9

9 AI Matrix ResNet152 IC 75.93 230 14.61 468.0 256 61.8

10 ResNet v2 50 IC 75.60 98 6.23 1,119.7 256 58.1

11 ResNet v1 50 IC 75.20 98 6.19 1,284.6 256 67.5

12 AI Matrix ResNet50 IC 74.38 98 5.99 1,060.3 256 57.9

13 Inception v2 IC 73.90 43 6.45 2,032.0 128 68.2

14 AI Matrix DenseNet121 IC 73.29 31 12.80 846.4 32 49.3

15 MLPerf MobileNet v1 IC 71.68 17 3.15 2,576.4 128 52.0

16 VGG16 IC 71.50 528 21.33 687.5 256 74.7

17 VGG19 IC 71.10 548 22.10 593.4 256 76.7

18 MobileNet v1 1.0 224 IC 70.90 16 3.19 2,580.6 128 51.9

19 AI Matrix GoogleNet IC 70.01 27 5.35 2,464.5 128 62.9

20 MobileNet v1 1.0 192 IC 70.00 16 3.11 3,460.8 128 52.5

21 Inception v1 IC 69.80 26 5.30 2,576.6 128 63.7

22 BVLC GoogLeNet Caffe IC 68.70 27 6.53 951.7 8 55.1

23 MobileNet v1 0.75 224 IC 68.40 10 3.18 3,183.7 64 51.1

24 MobileNet v1 1.0 160 IC 68.00 16 3.01 4,240.5 64 55.4

25 MobileNet v1 0.75 192 IC 67.20 10 3.05 4,187.8 64 51.8

26 MobileNet v1 0.75 160 IC 65.30 10 2.81 5,569.6 64 53.1

27 MobileNet v1 1.0 128 IC 65.20 16 2.91 6,743.2 64 55.9

28 MobileNet v1 0.5 224 IC 63.30 5.2 3.55 3,346.5 64 63.0

29 MobileNet v1 0.75 128 IC 62.10 10 2.96 8,378.4 64 55.7

30 MobileNet v1 0.5 192 IC 61.70 5.2 3.28 4,453.2 64 63.3

31 MobileNet v1 0.5 160 IC 59.10 5.2 3.22 6,148.7 64 63.7

32 BVLC AlexNet Caffe IC 57.10 233 2.33 2,495.8 16 36.3

33 MobileNet v1 0.5 128 IC 56.30 5.2 3.20 8,924.0 64 64.1

34 MobileNet v1 0.25 224 IC 49.80 1.9 3.40 5,257.9 64 60.6

35 MobileNet v1 0.25 192 IC 47.70 1.9 3.26 7,135.7 64 61.2

36 MobileNet v1 0.25 160 IC 45.50 1.9 3.15 10,081.5 256 68.4

37 MobileNet v1 0.25 128 IC 41.50 1.9 3.15 10,707.6 256 80.2

38 Faster RCNN NAS OD 43 405 5079.32 0.6 4 85.2

39 Faster RCNN ResNet101 OD 32 187 91.15 14.67 4 13

40 SSD MobileNet v1 FPN OD 32 49 47.44 33.46 8 4.8

41 Faster RCNN ResNet50 OD 30 115 81.19 16.49 4 10.8

42 Faster RCNN Inception v2 OD 28 54 61.88 22.17 4 4.7

43 SSD Inception v2 OD 24 97 50.34 32.26 8 2.5

44 MLPerf SSD MobileNet v1 300x300 OD 23 28 47.49 33.51 8 0.8

45 SSD MobileNet v2 OD 22 66 48.72 32.4 8 1.3

46 MLPerf SSD ResNet34 1200x1200 OD 20 81 87.4 11.44 1 14.9

47 SSD MobileNet v1 PPN OD 20 10 47.07 33.1 16 0.6

48 Mask RCNN Inception ResNet v2 IS 36 254 382.52 2.92 4 29.2

49 Mask RCNN ResNet101 v2 IS 33 212 295.18 3.6 2 42.4

50 Mask RCNN ResNet50 v2 IS 29 138 231.22 4.64 2 40.3

51 Mask RCNN Inception v2 IS 25 64 86.86 17.25 4 5.7

52 DeepLabv3 Xception 65 SS 87.8 439 72.55 13.78 1 49.2

53 DeepLabv3 MobileNet v2 SS 80.25 8.8 10.96 91.27 1 42.1

54 DeepLabv3 MobileNet v2 DM0.5 SS 71.83 7.6 9.5 105.21 1 41.5

55 SRGAN SR - 5.9 70.29 14.23 1 62.3

334

TABLE IX
IN-DEPTH CHARACTERIZATION OF THE 37 IMAGE CLASSIFICATION MODELS LISTED IN TABLE VIII AT THE OPTIMAL BATCH SIZES ON TESLA_V100. THE

MODEL EXECUTION IS PARTITIONED INTO BEGINNING (B), MIDDLE (M) , AND END (E) INTERVALS BASED ON LAYER INDEX. THE MOST INTENSIVE STAGES

FOR LATENCY, MEMORY ALLOCATION, FLOPS AND MEMORY ACCESS ARE SHOWN.

ID

Batch
Latency

(ms)

GPU
Latency

Percentage
(%)

GPU
Gflops

GPU
DRAM
Read
(GB)

GPU
DRAM
Write
(GB)

GPU
Achieved

Occupancy
(%)

Arithmetic
Intensity

(Flops/byte)

Arithmetic
Throughput

(TFlops)
Memory
Bound?

Latency
Stage

Allocated
Memory

Stage
flops
Stage

Memory
Access
Stage

1 400.06 94.77 2,910.44 50.64 38.74 39.74 32.56 7.68 � M M M M

2 324.49 93.92 2,492.92 27.25 24.48 33.79 48.19 8.18 � M M M M

3 86.39 88.05 552.22 10.54 8.18 34.6 29.50 7.26 � M M M B

4 593.97 96.32 3,954.06 58.90 65.44 43.51 31.80 6.91 � E E M E

5 412.37 94.90 2,725.14 39.08 44.62 42.88 32.56 6.96 � E E M E

6 517.11 95.90 3,947.38 51.17 54.77 42.78 37.26 7.96 � E E M E

7 275.05 92.43 1,742.39 24.40 32.61 43.15 30.62 6.85 � B E M E

8 360.90 94.29 2,720.62 33.87 37.12 42.19 38.32 7.99 � E E M E

9 591.47 96.29 4,034.74 63.70 72.16 43.9 29.70 7.08 � B M B M

10 245.07 91.74 1,480.10 21.84 28.29 42.96 29.52 6.58 � E E M E

11 213.52 90.42 1,477.33 18.79 22.76 42.29 35.56 7.65 � E E M E

12 257.80 91.89 1,561.76 24.86 33.39 44.26 26.81 6.59 � B M B M

13 68.27 83.62 363.33 9.67 7.32 40.23 21.38 6.36 � B B M B

14 40.24 93.32 150.02 10.13 7.93 44.94 8.30 4.00 � B B B B

15 51.57 79.76 148.18 7.08 6.81 52.58 10.67 3.60 � M M M M

16 399.31 94.98 2,655.39 24.38 33.23 26.14 46.10 7.00 � B B M E

17 464.47 95.61 3,207.02 26.44 37.65 24.91 50.04 7.22 � B B M E

18 51.59 79.73 148.18 6.97 6.75 52.59 10.80 3.60 � M M M M

19 56.08 80.20 259.14 7.63 6.18 42.16 18.76 5.76 � M B M B

20 38.48 79.55 108.93 6.51 6.19 52.32 8.58 3.56 � M M M B

21 53.35 79.43 252.06 7.21 5.61 41.74 19.67 5.95 � M B M B

22 9.08 80.00 20.26 0.73 0.84 33.87 12.97 2.79 � E B E B

23 20.82 73.14 45.10 4.86 4.11 52.73 5.03 2.96 � M M M M

24 14.92 78.26 38.17 3.24 2.88 48.92 6.23 3.27 � M M M M

25 15.69 72.61 33.10 3.52 3.08 52.02 5.01 2.91 � M M M M

26 11.30 71.86 23.14 2.31 2.17 51.01 5.17 2.85 � M M M M

27 9.86 77.23 24.39 1.90 1.84 47.78 6.54 3.20 � M M M M

28 20.00 71.93 52.03 2.99 2.85 43.87 8.91 3.62 � B M B M

29 7.75 71.35 14.80 1.26 1.35 47.12 5.68 2.68 � M M M M

30 15.07 71.75 38.22 2.08 2.09 43.27 9.17 3.53 � B M B M

31 10.91 71.38 26.62 1.29 1.42 41.43 9.83 3.42 � B M B M

32 6.52 68.69 15.36 0.76 0.51 37.31 12.11 3.43 � B B B B

33 7.44 70.48 17.05 0.71 0.88 39.88 10.73 3.25 � B M B M

34 11.95 53.93 14.79 1.25 1.42 44.25 5.52 2.30 � B M B M

35 9.09 53.68 10.87 0.84 1.02 43.46 5.82 2.23 � B M B M

36 25.36 60.78 36.75 3.26 3.09 42.39 5.79 2.38 � B M B M

37 23.71 70.01 23.81 1.87 2.31 39.8 5.69 1.43 � M M B M

TABLE X
CHARACTERIZATION OF 10 MXNET MODELS, WHICH ARE COMPARABLE TO THE TENSORFLOW ONES LISTED IN TABLE VIII (LABELED WITH THE SAME

ID). THE ONLINE LATENCY IS MEASURED AT BATCH SIZE 1 AND THE OTHERS ARE MEASURED AT THE MODEL’S OPTIMAL BATCH SIZE ON TESLA_V100.
THE ONLINE LATENCY AND MAXIMUM THROUGHPUT ARE NORMALIZED TO TENSORFLOW’S.

ID Name

Normalized
Online

Latency

Optimal
Batch
Size

Normalized
Maximum

Throughput

GPU
Latency

Percentage
GPU

Gflops

GPU
DRAM
Read
(GB)

GPU
DRAM
Write
(GB)

GPU
Achieved

Occupancy
(%)

Arithmetic
Intensity

(Flops/byte)

Arithmetic
Throughput

(TFlops)
Memory
Bound?

4 ResNet v2 152 1.76 256 1.03 97.00 4,116.42 49.05 52.62 46.91 38.61 7.95 �
5 ResNet v2 101 1.59 256 1.02 96.77 2,882.65 32.33 36.16 46.38 40.14 7.96 �
6 ResNet v1 152 1.68 256 0.90 96.20 3,828.11 51.29 55.00 49.40 34.35 7.54 �
8 ResNet v1 101 1.60 256 0.91 95.67 2,589.76 33.93 37.84 49.57 34.42 7.45 �

10 ResNet v2 50 1.41 256 1.03 97.10 1,636.10 17.03 22.60 46.98 39.37 7.60 �
11 ResNet v1 50 1.32 256 0.96 94.90 1,339.50 18.37 24.04 51.97 30.12 6.76 �
18 MobileNet v1 1.0 224 1.00 256 1.54 93.75 298.38 6.91 8.29 63.53 18.71 4.96 �
23 MobileNet v1 0.75 224 0.95 64 1.76 79.49 45.00 3.47 2.73 63.38 6.92 4.08 �
28 MobileNet v1 0.5 224 0.87 64 1.35 81.01 51.47 1.99 1.82 48.68 12.88 4.49 �
34 MobileNet v1 0.25 224 0.93 64 1.64 64.32 13.77 0.81 0.90 50.57 7.64 2.88 �

on recent GPUs. This is not true for 2 object detection models,

which (except for Faster_RCNN_NAS) attribute only 0.6%
to 14.9% of latency to convolution layers. For these models, the

dominating layer type is Where, which reshapes a tensor with

respect to a user-defined operator. For 3 instance segmentation

models, convolution layers dominate the model latency; except

for Mask_RCNN_Inception_v2 whose latency is also

dominated by Where layers. For 4 semantic segmentation

models, the model latency is affected by both the convolution

layers and the memory-bound layers (such as Transpose,

Add, and Mul). Finally, 5 the super resolution model SRGAN

is dominated by convolution layers.

GPU latency, flops and memory accesses — Using the

model-, layer-, and GPU kernel-level profiling, we perform

an in-depth analyses of the 37 image classification models at

their optimal batch sizes on Tesla_V100. Table IX shows

the model’s latency at the optimal batch size, GPU latency

percentage (i.e. the latency due to GPU kernel execution

normalized to the model latency), GPU metrics, and arithmetic

intensity and throughput. It also shows the most intensive stage

for latency, memory allocation, GPU flops, and memory access

throughout the model execution. We find that across the models

335

(a)

(b)()(b)

Quadro_RTX Tesla_V100 Tesla_P100 Tesla_P4Tesla_P4 Tesla_M60

Fig. 11. The throughput and latency (log scale) of MLPerf_ResNet50_-
v1.5 across batch sizes and systems.

(/)

(
/)

Fig. 12. The roofline analysis for the 37 image classification models with
their the optimal batch sizes on Tesla_V100.

the GPU latency percentage varies from 53.68% to 95.61%
and is roughly proportional to the number of flops and memory

accesses (the sum of GPU DRAM reads and writes). We also

observe that models with high batch latency tend to have a

high GPU latency percentage. This either suggests that the

GPU saturates for these models or that the models are not well

optimized for GPU execution. The low GPU latency percentage

for some models shows that the time spent within non-GPU

code (framework overhead, GPU stalls due to synchronization,

etc.) is high.

Batch size vs GPU achieved occupancy — The GPU

achieved occupancy is a partial indicator of GPU utilization.

Table VI shows that as a model’s batch size approaches the

optimal, its overall achieved GPU occupancy increases.

Roofline analysis — Figure 12 shows the roofline analysis

for all 37 image classification models with their optimal batch

sizes on Tesla_V100. Out of 37 models, 20 are memory-

bound. Models with low compute and memory requirements

tend to be memory-bound and have lower accuracy, e.g. some

variants of MobileNet which target edge devices. All models

achieve at most 52% of the theoretical peak throughput,

suggesting that there is room for optimizations.

Latency, memory allocation, flops, and memory access
trend — To understand the performance trend within model

execution, we divide the model execution into 3 intervals

based on the layer index: beginning, middle, and end based

on the layer index. We then compute the total latency, flops,

and memory accesses within each interval and identify which

interval dominates. The last 4 columns in Table IX show the

results of the 37 image classification models on Tesla_V100.

The demanding intervals vary across models and suggest that

one can potentially interleave multiple model executions to

increase GPU utilization.

B. ML Framework Evaluation

To compare ML frameworks, 10 MXNet models are selected

from the MXNet model zoo [27]. We choose 6 variants of

ResNet which are compute-intensive and are compute-bound

(at the optimal batch size), and 4 variants MobileNet which

are less compute-intensive and are memory-bound. The models

(shown in Table X) are comparable to the TensorFlow models.

We perform the comparison between the TensorFlow and

MXNet frameworks on Tesla_V100. The online latency

and maximum throughput in the Table X are normalized to

the corresponding values using TensorFlow. We use XSP to

compute the optimal batch size for each MXNet model. Except

for model 18, the optimal batch size for all MXNet models

match the corresponding TensorFlow models.

Compute-bound models — Table X shows that the online

latency (batch size 1) of MXNet ResNets is higher than that

of the corresponding TensorFlow model. After looking into

the analysis results, we find that while the total GPU kernel

latencies of TensorFlow and MXNet ResNets are about the

same, the MXNet ResNets have a much higher non-GPU

latency. MXNet ResNet_v1_50, for example, has a non-

GPU latency of 4.44ms (55.1% of the total online latency)

whereas it is only 2.18ms for TensorFlow ResNet_v1_50
(35.3% of the total). We observe that as the batch size increases

(and the model becomes more compute-bound) the percentage

of the non-GPU latency decreases and MXNet ResNets
achieve about the same maximum throughput as TensorFlow

ResNets. At the optimal batch size, TensorFlow and MXNet

ResNets have comparable GPU latency percentage, flops,

memory accesses, achieved occupancy, and roofline results.

This suggests that MXNet incurs a fixed overhead for model

execution which is more pronounced for small batch sizes.

Memory-bound models — For the less compute-intensive

MobileNets, we observe that MXNet the MobileNets
achieve the same online latency as the corresponding Ten-

sorFlow model. However, as the batch size increases (and

the models become memory-bound) we find that MXNet

MobileNets has fewer memory accesses and therefore a

higher achieved GPU occupancy compared to the TensorFlow

models. As a result, MXNetMobileNets achieve between

35% and 74% more throughput at their optimal batch sizes

(shown in Table X). Further GPU kernel-level analysis attributes

the cause to the Eigen library. The Eigen library is used by

TensorFlow (but not MXNet) for element-wise layers and it

incurs excessive DRAM reads and writes. This becomes a

performance-limiting factor for memory-bound models.

C. System Evaluation

We use XSP to evaluate MLPerf_ResNet50_v1.5 on

all 5 GPU systems in Table VII using the NGC TensorFlow

container. We fix the software stack (TensorFlow, cuDNN,

cuBLAS, CUDA version, etc.) on all 5 systems to be the same.

Figure 11a shows the throughput across systems and batch

336

sizes. Figure 11b shows the GPU latency (the total latency of

all the GPU kernel calls) in log scale for the 5 systems across

batch sizes. Although the Quadro_RTX GPU has a slightly

higher peak FLOPS compared to Tesla_V100, it has a much

lower memory bandwidth. Hence, Quadro_RTX straggles

on memory-bound layers and performs slightly worse when

compared to Tesla_V100. We observe that the performance

at each batch size differs across systems. The performance also

scales differently across systems with respect to the batch size.

Looking at the GPU kernel-level profile for each system, we

find that the GPU kernels invoked are system-dependent — even

with the same batch size and software stack. Both Quadro_-
RTX and Tesla_V100 call the same set of GPU kernels,

while the other 3 systems use a different set of GPU kernels.

This is because the same cuDNN API may use different GPU

kernels for different GPU systems. For example, the convolution

layers for batch size 256 on Tesla_P100, Tesla_P4,

and Tesla_M60 invoke the maxwell_scudnn_* kernels,

whereas on Quadro_RTX and Tesla_V100 the volta_-
scudnn_* kernels are invoked. This implies that cuDNN uses

optimized kernels for GPU generations after Volta. Furthermore,

because of the cuDNN algorithm selection heuristics, the distri-

bution of the kernel calls differs across systems. For example,

Tesla_V100 calls the volta_scudnn_128x64_relu_-
interior_nn_v1 kernel 34 times whereas Quadro_RTX
calls it 18 times (the other 16 being dispatched to the volta_-
scudnn_128x128_relu_interior_nn_v1 kernel).

V. CONCLUSION

A big hurdle in optimizing and deploying ML workloads

is understanding their performance characteristics across the

HW/SW stack. The analyses currently performed on ML

models and systems are largely limited by the lack of correlation

between profiles from different profiling tools or methods.

This paper proposes XSP, an across-stack profiling design that

aggregates profile data from different sources and correlates

them to construct a holistic and hierarchical view of ML model

execution. While the across-stack profiling design is general,

this paper focuses on how it enables in-depth automated

profiling and characterization of ML models on GPUs. We

use XSP’s profiling and analysis capabilities to systematically

characterize 65 state-of-the-art ML models. Through the 15
types of analysis introduced, we derive meaningful insights

that would otherwise be difficult to discern without XSP. We

show that XSP helps researchers understand the sources of

inefficiency in ML models, frameworks, and systems.

ACKNOWLEDGMENTS

This work is supported by the IBM-ILLINOIS Center for

Cognitive Computing Systems Research (C3SR) - a member

of the IBM Cognitive Horizon Network, and the Applications

Driving Architectures (ADA) Research Center - one of the

JUMP Centers co-sponsored by SRC and DARPA.

REFERENCES

[1] “TensorFlow Profiler,” www.tensorflow.org/api docs/python/tf/profiler,
accessed: 2020-02-20.

[2] “MXNet Profiler,” mxnet.incubator.apache.org/api/python/profiler/profiler.
html, accessed: 2020-02-20.

[3] “NVIDIA nvprof,” docs.nvidia.com/cuda/profiler-users-guide/index.html,
accessed: 2020-02-20.

[4] “NVIDIA Nsight,” developer.nvidia.com/tools-overview, accessed: 2020-
02-20.

[5] “NVIDIA GPU-Accelerated Containers,” www.nvidia.com/en-us/
gpu-cloud/containers/, accessed: 2020-02-20.

[6] “NVIDIA Tools Extension,” docs.nvidia.com/cuda/profiler-users-guide/
index.html#nvtx, accessed: 2020-02-20.

[7] “MLPerf Inference,” github.com/mlperf/inference, accessed: 2020-02-20.
[8] W. Zhang, W. Wei, L. Xu, L. Jin, and C. Li, “AI Matrix: A Deep

Learning Benchmark for Alibaba Data Centers,” 2019.
[9] “NVIDIA CUPTI,” developer.nvidia.com/cuda-profiling-tools-interface,

accessed: 2020-02-20.
[10] “NVTX Plugins for Deep Learning,” github.com/NVIDIA/nvtx-plugins,

accessed: 2020-02-20.
[11] S. Chintala, “ConvNet Benchmarks,” github.com/soumith/

convnet-benchmarks, accessed: 2020-02-20.
[12] Baidu, “Deepbench,” github.com/baidu-research/DeepBench, accessed:

2020-02-20.
[13] C. Li, A. Dakkak, J. Xiong, and W.-M. Hwu, “Benanza: Automatic

μBenchmark Generation to Compute “Lower-bound” Latency and Inform
Optimizations of Deep Learning Models on GPUs.” IEEE, May 2020,
the 34th IEEE International Parallel & Distributed Processing Symposium
(IPDPS’20).

[14] T. Ben-Nun, M. Besta, S. Huber, A. N. Ziogas, D. Peter, and T. Hoefler,
“A Modular Benchmarking Infrastructure for High-Performance and
Reproducible Deep Learning.” IEEE, May 2019, the 33rd IEEE
International Parallel & Distributed Processing Symposium (IPDPS’19).

[15] “Trace Context,” www.w3.org/TR/trace-context, accessed: 2020-02-20.
[16] “Open Tracing,” opentracing.io, 2020, accessed: 2020-02-20.
[17] “Open Telemetry,” opentelemetry.io, accessed: 2020-02-20.
[18] A. Pal and M. Pal, “Interval tree and its applications,” Advanced Modeling

and Optimization, vol. 11, no. 3, pp. 211–224, 2009.
[19] “Amazon EC2 P3 Instances,” aws.amazon.com/ec2/instance-types/p3/,

accessed: 2020-02-20.
[20] “NVIDIA GPU Metrics Reference,” docs.nvidia.com/cuda/

profiler-users-guide/index.html#metrics-reference, accessed: 2020-
02-20.

[21] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for floating-point programs and multicore
architectures,” Lawrence Berkeley National Lab.(LBNL), Berkeley, CA
(United States), Tech. Rep., 2009.

[22] “NVIDIA cuDNN,” developer.nvidia.com/cudnn, accessed: 2020-02-20.
[23] G. Guennebaud, B. Jacob et al., “Eigen v3,” eigen.tuxfamily.org, accessed:

2020-02-20.
[24] “TensorFlow-Slim Image Classification Model Library,” github.com/

tensorflow/models/tree/master/research/slim, accessed: 2020-02-20.
[25] “TensorFlow Detection Model Zoo,” github.com/tensorflow/models/

blob/master/research/object detection/g3doc/detection model zoo.md,
accessed: 2020-02-20.

[26] “TensorFlow DeepLab Model Zoo,” github.com/tensorflow/models/blob/
master/research/deeplab/g3doc/model zoo.md, accessed: 2020-02-20.

[27] “MXNet Gluon Model Zoo,” gluon-cv.mxnet.io/model zoo/index.html,
2020, accessed: 2020-02-20.

337

